
A Methodology for Accelerating Variant Calling on GPU
Beatrice Branchini1, 2, Alberto Zeni2, Marco D. Santambrogio2

1Pacific Northwest National Laboratory, Richland (WA, USA)
2Politecnico di Milano, Milan (Italy)

1 INTRODUCTION
The medical domain is shifting toward a personalized approach to
healthcare delivery. To achieve such a goal, the community requires
new high-performance tools to find genetic mutations in the pa-
tient’s genome. In this context, the Broad Institute’s Genome Anal-
ysis ToolKit HaplotypeCaller represents one of the most used tools
to highlight such variants. The core of this tool is the Pair Hidden
Markov Model (PairHMM) algorithm, which, however, embodies a
considerable bottleneck for the entire application. Offloading the
execution of this task to hardware accelerators represents a valu-
able solution. Nevertheless, State-of-the-Art designs lack flexibility
for managing the significant variability of the size of the inputs
the tool has to process [1]. They exploit specific features within
datasets, making them only applicable to specific scenarios. Conse-
quently, they are intrinsically defective, and their applicability in
standard clinical practice is considerably limited. For these reasons,
this work presents a novel high-performance GPU accelerator for
the PairHMM algorithm that overcomes the fixed-length limitation
of State-of-the-Art designs. To summarize, this work provides the
following contributions:

• a dynamic memory swap methodology that allows tailor-
ing memory resources to increase the throughput while
preserving the application’s usability;

• a high-performance GPU implementation of the PairHMM
algorithm, which outperforms the fastest State-of-the-Art
hardware-accelerated solution up to 1.6× and achieving an
8154× speedup over the software baseline.

2 PAIRHMM ALGORITHM
The PairHMM relies on the computation of three Dynamic Pro-
gramming (DP) matrices (𝑀 , 𝑋 , 𝑌 ), which allows calculating the
comprehensive alignment probability. Algorithm 1 describes the
DP-based formulation for the PairHMM given a read 𝑅 and an
haplotype 𝐻 . The recursive equations to compute𝑀 , 𝑋 , and 𝑌 are:


𝑀 (𝑖, 𝑗) = 𝑝 𝑗 ∗ {𝑚𝑚 𝑗 ∗𝑀 (𝑖 − 1, 𝑗 − 1) + 𝑔𝑚 𝑗 ∗ [𝑋 (𝑖 − 1, 𝑗 − 1) + 𝑌 (𝑖 − 1, 𝑗 − 1)]}
𝑋 (𝑖, 𝑗) = 𝑥𝑥 𝑗 ∗ 𝑋 (𝑖, 𝑗 − 1) +𝑚𝑥 𝑗 ∗𝑀 (𝑖, 𝑗 − 1)
𝑌 (𝑖, 𝑗) = 𝑦𝑦 𝑗 ∗ 𝑌 (𝑖 − 1, 𝑗) +𝑚𝑥 𝑗 ∗𝑀 (𝑖 − 1, 𝑗)

(1)
In these equations, mm, mx, my, gm, xx, and yy are transition prob-
abilities and represent the probability of a state transition. Their
value depends on the sequences quality scores, supplied by the
sequencing machinery. 𝑝 𝑗 is the prior probability (p) and depends
on the base quality score,𝑄𝑏 , supplied by the biological sequencing
process. It assumes different values:

𝑝 =

{
𝜖 (𝑄𝑏 )/3 if mismatching bases
1 − 𝜖 (𝑄𝑏 ) if matching bases (2)

where 𝜖 (𝑄𝑏 ) is the error rate calculated from the base quality in
Phred scale [3].

Algorithm 1 PairHMM algorithm

1: Initializations: 𝑀0, 𝑗 = 𝑋0, 𝑗 = 0 and 𝑌0, 𝑗 = 21020/𝑙𝑒𝑛(𝐻 ) for
1 ≤ 𝑗 ≤ 𝑙𝑒𝑛(𝐻 )

2: for 1 ≤ 𝑖 ≤ 𝑙𝑒𝑛(𝑅) do
3: for 1 ≤ 𝑗 ≤ 𝑙𝑒𝑛(𝐻 ) do
4: Calculate𝑀𝑖 𝑗 with Equation (1)
5: Calculate 𝑋𝑖 𝑗 with Equation (1)
6: Calculate 𝑌𝑖 𝑗 with Equation (1)
7: end for
8: end for
9: Total likelihood: 𝑃 (𝑅 |𝐻 ) = ∑

𝑗

(
𝑀𝑅,𝑗 + 𝐼𝑅,𝑗

)
3 IMPLEMENTATION
The computation of the sequence similarity with the PairHMM
algorithm can be parallelized by exposing a wavefront-based com-
putational pattern, following the same approach as in the Smith-
Waterman [9] and Needleman-Wunsch [6] algorithms. The wave-
front pattern exploits the lack of dependencies among cells in the
same anti-diagonal in the DP matrix, enabling us to update them
in parallel. Hence, we map each thread to an element of the anti-
diagonal to parallelize the computation. To ensure the computation
of anti-diagonals of any length, we split each anti-diagonal into
segments, whose width is equal to the number of threads within
a block. We also leverage the limited number of anti-diagonals
involved at each iteration to reduce the kernel memory footprint,
storing only the three needed for the specific iteration. We allocate
the anti-diagonals in shared or global memory, depending on the
resource required, determined according to the dynamic memory
swap (Section 3.1). We then focused on exposing another layer of
parallelism to improve device utilization. Therefore, we perform
multiple alignments in parallel on the device by mapping each pair
of sequences to a GPU block. In this case, the number of alignments
determines the number of blocks spawned on the device.

3.1 Dynamic Memory Swap
To maximize the flexibility and the performance of our solution,
we propose a new methodology for accelerating the PairHMM
execution. The dynamic memory swap relies on the observation
that the memory required by the computed anti-diagonals depends
only on the length of the sequences involved in the alignment.
Therefore, pre-computing the required resources for each alignment
allows for fine-grained tailoring of the allocated memory at runtime.
We exploit this knowledge by dynamically allocating GPU shared
memory when invoking the kernel, while we also allocate GPU
global memory for the longer alignments that exceed the maximum
amount of allocatable shared memory. This enables us to support
any alignment length and to exploit the most performant GPU
memory for every workload.



Branchini, et al.

64 - 128

128 - 256

256 - 512

320 - 640

512 - 1024

1024 - 2048

2048 - 4096

4096 - 8192

Dataset Configuration

10

20

30

40

50

60

70

Th
ro

ug
hp

ut
[G

C
U

PS
]

Global only
Dynamic Memory Swap
State-of-the-Art Limit

Figure 1: Throughput with (violet) and without (yellow) the
dynamic memory swap on the NVIDIA V100; red line refers
to themaximum supported length in State-of-the-Art designs

4 RESULTS
4.1 Experimental Setup
We tested our solution on an NVIDIA V100 connected to a dual-
socket Intel Xeon Platinum 8167M CPU with 768 GB of RAM. In all
evaluations, we consider the kernel time, measured with NVIDIA
Nsight Systems. In addition, we compute the throughput in Giga
Cell Updates Per Second (GCUPS) as follows:

𝐺𝐶𝑈𝑃𝑆 =

∑
𝑖 (𝑟𝑙𝑒𝑛𝑖 × ℎ𝑙𝑒𝑛𝑖 )

𝑡 × 109
(3)

where rlen and hlen are the i-th read and haplotype lengths, respec-
tively, and t is the kernel time in seconds. For the first evaluation,
we generated eight synthetic datasets comprising one million align-
ments with different sequence lengths. The haplotypes span from
128 to 8192 characters, while the reads range from 64 to 4096 charac-
ters. The second evaluation, instead, consider a widely used dataset
in the State of the Art, called 10s [2].

4.2 Experimental Evaluation
Figure 1 depicts the throughput tendency for our analyzed datasets.
In the first part of the plot, we observe that, employing our dynamic
memory swap, we attain a performance improvement of approxi-
mately 13%, when aligning sequences of 64 and 128 characters in
length. Then, with longer sequences, we observe a considerable
increase in performance, reaching the peak of 75 GCUPS analyzing
the 256-512 dataset. Tailoring the dynamically allocated shared
memory to the sequences actually processed by the device allows
optimizing the block management on the GPU, as more blocks can
be executed in parallel on the same Streaming Multiprocessor (SM).
We recreate the corner case for currently-available solutions with
the dataset 320-640 (red vertical line in Figure 1). Indeed, State-of-
the-Art GPU solutions can process alignments up to this size [5].
We overcome this limitation by still exploiting shared memory,
improving the usability and performance of the accelerator. After
this threshold, the throughput remains high as the efficient shared
memory management achieved with the dynamic memory swap
improves GPU utilization. The subsequent decrease in performance

Table 1: Evaluation with ’10s’ dataset

Design Technology
Node [nm]

Avg. Execution
Time [ms]

Speedup w.r.t
Java baseline

Java baseline [2] N/A 10800 1×
C++ version [2] N/A 1267 9×
Intel Xeon AVX, 1 core [2] N/A 138 78×
Intel Xeon 24 cores [2] N/A 15 720×
NVIDIA K40 [2] 28 70 154×
NVIDIA Tesla V100 [2, 5] 12 27.1 399×
NVIDIA Tesla V100 [5] 12 13.8 783×
Intel Stratix V [7] 28 8.3 1301×
Intel Stratix V [4] 28 5.3 2038×
AMD Xilinx KU3 [8] 20 5 2160×
Intel Arria 10 [7] 20 2.8 3857×
Intel Arria 10 [4] 20 2.6 4154×
Intel Arria 10 (128 PE) [10] 20 2.2 4909×
NVIDIA Tesla V100 12 1.3 8154×

is caused by the increased amount of shared memory required by
each alignment that reduces the number of blocks the GPU can
spawn on a single SM. Finally, focusing on the last part of the plot,
falling back to global memory, as in the 1024-2048 dataset case, al-
lows us to support longer sequences whose memory requirements
exceed the shared memory available for the single block. Providing
support in such scenarios becomes particularly relevant consider-
ing the prominent use of third-generation, or long-read, sequencing
technologies capable of producing sequences of thousands of char-
acters. This evaluation provides an overview of the performance
scaling of our accelerator, depending on sequence length. Neverthe-
less, real-life datasets contain different combinations of alignments,
creating a hybrid scenario, where the computation of the PairHMM
on short sequences overlaps with the one on longer ones allowing
reaching high performance.

Table 1 shows the performance of multiple State-of-the-Art so-
lutions when aligning sequences of the 10s dataset. Results are
reported over the Java baseline, reflecting the currently-used tool
for genomics analyses. Our solution is able to achieve a 8154× over
the baseline, outperforming all the hardware-accelerated solutions.
More specifically, our apporach delivers more than 10× improve-
ment on the best-performing GPU solution, and 1.69× speedup over
the best FPGA design.

5 CONCLUSIONS
This work presented a high-performance GPU accelerator for the
PairHMM algorithm featuring a novel methodology, the dynamic
memory swap, to provide support for long sequences, overcoming
the limitations of State-of-the-Art solutions. Experimental results
prove the effectiveness of our approach, showing 8154× and 1.6×
performance improvements against the software baseline and the
fastest hardware-accelerated solution, respectively, when executing
on an NVIDIA V100.

ACKNOWLEDGMENTS
This work has been partially supported by Compiler Frameworks
and Hardware Generators for Innovative US Government Design.
The Authors would like to thank Oracle Research Program for the
Oracle Cloud Credits.



A Methodology for Accelerating Variant Calling on GPU

REFERENCES
[1] Subho S Banerjee, Mohamed El-Hadedy, Ching Y Tan, Zbigniew T Kalbarczyk,

Steve Lumetta, and Ravishankar K Iyer. 2017. On accelerating pair-HMM com-
putations in programmable hardware. In 2017 27th International Conference on
Field Programmable Logic and Applications (FPL). IEEE, 1–8.

[2] Mauricio Carneiro. 2013. Accelerating variant calling. In Broad Institute, Intel
Genomic Sequencing Pipeline Workshop, Powerpoint Presentation, Mount Sinai.

[3] Peter JA Cock, Christopher J Fields, Naohisa Goto, Michael L Heuer, and Peter M
Rice. 2010. The Sanger FASTQ file format for sequences with quality scores,
and the Solexa/Illumina FASTQ variants. Nucleic acids research 38, 6 (2010),
1767–1771.

[4] Sitao Huang, Gowthami Jayashri Manikandan, Anand Ramachandran, Kyle Rup-
now, Wen-mei W Hwu, and Deming Chen. 2017. Hardware acceleration of
the pair-HMM algorithm for DNA variant calling. In Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. 275–
284.

[5] Enliang Li, Subho S Banerjee, Sitao Huang, Ravishankar K Iyer, and Deming Chen.
2021. Improved GPU Implementations of the Pair-HMM Forward Algorithm
for DNA Sequence Alignment. In 2021 IEEE 39th International Conference on
Computer Design (ICCD). IEEE, 299–306.

[6] Saul B Needleman and Christian D Wunsch. 1970. A general method applicable
to the search for similarities in the amino acid sequence of two proteins. Journal
of molecular biology 48, 3 (1970), 443–453.

[7] Chris Rauer and N Finamore. 2016. Accelerating genomics research with opencl
and fpgas. Altera, Now Part of Intel, Tech. Rep (2016).

[8] Davide Sampietro, Chiara Crippa, Lorenzo Di Tucci, Emanuele Del Sozzo, and
Marco D Santambrogio. 2018. Fpga-based pairhmm forward algorithm for dna
variant calling. In 2018 IEEE 29th International Conference on Application-specific
Systems, Architectures and Processors (ASAP). IEEE, 1–8.

[9] Temple F Smith, Michael S Waterman, et al. 1981. Identification of common
molecular subsequences. Journal of molecular biology 147, 1 (1981), 195–197.

[10] Pengfei Wang, Yuanwu Lei, and Yong Dou. 2019. Pair-HMM accelerator based
on non-cooperative structure. IEICE Electronics Express (2019), 16–20190402.


	1 Introduction
	2 PairHMM algorithm
	3 Implementation
	3.1 Dynamic Memory Swap

	4 Results
	4.1 Experimental Setup
	4.2 Experimental Evaluation

	5 Conclusions
	Acknowledgments
	References

