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Ares is built on the Parthenon framework 
for adaptive mesh refinement on 
distributed HPC clusters. We extend this 
framework by adding solvers for gravity, 
thermonuclear burning, and equation of 
state (EOS) necessary to simulate type Ia 
explosions.

To simulate the energy released through nuclear burning processes, we solve 
the equations of nuclear statistical equilibrium (NSE), where energies are high 
enough for strong interactions to equilibriate, for the mass fractions of 
nuclides.

To implement self-gravity in our simulations, we built a monopole gravity 
solver, creating a 1D gravity profile based on a shell-averaged density profile. 

For the equation of state, we incorporated our extension of the existing 
Singularity-EOS developed at LANL to include Helmholtz EOS to support 
conditions in the degenerate gas interior of white dwarfs.

Type Ia Supernovae are highly energetic 
thermonuclear explosions

which serve as standardizable distance markers that are essential 
for investigating the accelerating expansion of our Universe. The 
explosion physics that trigger these events are inherently multi-
scale , ranging from the usual diameter of a white dwarf at about 
4 × 103 to 104 km to the carbon flame thickness ∼ 100 cm, 
which poses a huge challenge in performing hydrodynamical 
simulations  of these systems. To resolve the physical mechanism 
at every scale possible, we employ state-of-the-art adaptive 
mesh refinement (AMR) techniques within our hydro solvers.

of white dwarfs, 

Tycho type Ia supernova remnant (SN 1572)
Credit: X-ray: NASA/CXC/Rutgers/K. Eriksen et al.; Optical: DSS

these AMR-enabled simulations However,

require immense computational resources. 
Most existing codes are only designed to run on homogeneous 
CPU-only systems and are at risk of losing their competitiveness as 
there is a general shift towards heterogenous HPC architectures. 
There exist several efforts to enable these codes for GPUs, however, 
they are vendor specific. Solutions for performance portability like 
Kokkos facilitate new developments.  

Inspired by this problem, we create the first performance portable 
multi-physics massively-parallel hydrodynamics code Ares based on 
the Parthenon AMR framework, which enables us to reach resolved 
scales that are out of reach for current state-of-the-art codes.
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Helmholtz Equation of State

The internal energy (left) and pressure (right) 
calculated using the Helmholtz equation of state for 
an equal-mass fraction mixture of C-12 and O-16 in 
temperatures and densities relevant for degenerate 
stellar interiors. To our knowledge, this is the first 
implementation of the Helmholtz EoS on GPUs.

Scaling Study

With adaptive mesh 
refinement enabled, 
strong scaling shows 
perfect speedup up to 32 
GPUs, and near-linear 
scaling for both CPU and 
GPU ranks. MPI ranks with 
one GPU were up to 50% 
faster than 64 OpenMP-
enabled CPU cores.

We conducted scaling studies by evaluating Ares on a toy 
ideal gas sphere problem for 1000 cycles on LANL Chicoma. 
We varied MPI ranks from 1 to 64, with each rank using 
either 64 OpenMP-enabled CPU cores or 1 A100 GPU. To 
match the architecture, GPU runs used 4 MPI ranks per 
node while CPU runs used 1.

The weak scaling plot 
outlines that the CPU 
runs maintain 66% 
efficiency at 64 MPI 
ranks with OpenMP. The 
weak scaling results for 
GPU runs show an 
efficiency of 84% using 
64 GPUs on 16 nodes.

(left) Mass fractions of different isotopes relevant for 
thermonuclear burning for materials with density of 
107 g/cm3 and temperature of 6 × 109 Kelvin. 
(right) Mass fraction distribution for key isotopes 
within a range of temperatures relevant for 
thermonuclear burning.

Slice plot of a white dwarf at initialization with 7 AMR levels using 
Ares, produced with Paraview 5.10.1

A collapsing gas sphere test problem for Ares with 3 levels 
of adaptive mesh refinement based on a density gradient 
criterion

NSE Solver Self-Gravity Monopole Solver

Slice plot of a white dwarf with an ignition hotspot of temperature set at 7 x 
109  K, produced with Python package yt.

Adaptive Mesh Refinement in the Parthenon Framework
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Instead of performing a full Poisson solve for self-gravity, 
we took advantage of the spherical symmetry of our 
system and implemented a monopole gravity solver. This 
solve requires mass binning shown above for two 
timesteps which we use to evaluate the gravitational 
acceleration for each zone in our computational domain.
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