Two-phase 10 Enabling Large-scale Introspection

Ke Fan
kfan23@uic.edu
University of Illinois at Chicago
Chicago, Illinois, USA

1 INTRODUCTION

Rapid advancements in computing technologies, especially the
arrival of Exascale machines are pushing the frontiers of compu-
tational sciences, in terms of both the scale and the complexity of
problems that can be studied [8]. However, these growing possi-
bilities also necessitate optimal use of computational resources, in
order to achieve faster time-to-solution, lower (monetary) cost of
computing, and lower carbon footprint. Performance profiling and
visualization are critical to these goals. Broadly, profiling entails
measuring key metrics for the performance of parallel programs
and their specific portions (e.g., lines of code, loops, and functions),
while simultaneously exposing the semantic context. Commonly
used metrics measure runtime, data movement, cache misses, and
other costs. Analysis and visualization of the resulting profiles is
the second key step. Whereas summary statistics and pre-scripted,
static plots can provide some indication of the overall performance
behavior, a more-thorough understanding typically requires sup-
port from interactive visualization tools.

State-of-the-art performance analysis systems struggle to keep
up with the increasing scale of today’s applications. Their limita-
tions can be broadly grouped into two categories: (1) I/O overhead
and scalability challenges of parallel profilers; and (2) limited in-
teractivity, portability, and scalability of visualization and analysis
systems. There exists several profiling tools [2, 7] for capturing
performance-related metrics from parallel applications. Although
flexible and mostly easy to integrate into applications, existing so-
lutions strive to reduce the runtime overhead of the profiler, largely
ignoring the I/O overhead and the size of the profiles. As demon-
strated in this paper, the I/O of profiling reports can be expensive
for large-scale parallel applications (with hundreds or thousands of
processes). State-of-the-art profiling systems like Caliper [2] and
HPCToolkit [1] either support single-file I/O or file-per-process I/O
modes which are known to have limitations at higher scales. A com-
mon way to analyze these profiles is via interactive visualization
that can promote seamless hypothesis-driven exploration. A ma-
jor challenge faced by existing systems stems from the increasing
scale of the HPC applications that lead to proliferation in collected
performance data. In order to be effective, these visualization sys-
tems must scale and encode data from all processes. For example,
exploring per-process behavior [5] is crucial for diagnosing load
imbalance issues and discovering interesting patterns (e.g., every
nth process performs poorly). However, depicting thousands of pro-
cesses simultaneously is a difficult problem. As demonstrated in [7],
few visualization methods can handle thousands of simultaneous
tasks and some that can do so only for statistical plots.

Meeting the scalability criteria of both the profiling and the visu-
alization systems, we develop Viveka, an end-to-end performance
introspection framework comprising two essential components: (1)
a lightweight and scalable parallel profiling system (Section 2); (2)

Sidharth Kumar
sidharth@uic.edu
University of Illinois at Chicago
Chicago, Illinois, USA

a scalable, companion visualization system that can load the per-
formance metric files and facilitate interactive analysis (Section 3).
Our profiler collects performance metrics effectively from all run-
ning processes with minimal overhead. It facilitates annotating the
HPC code, e.g., loops and code snippets, and logging the associated
application-specific metadata. To ensure that the profiler has low
overhead (especially at high core counts), we deploy a two-phase
data aggregation strategy with an optimal number of files that find a
middle ground between single-file I/O and file-per-process I/0. We
have also developed a compact file format that eliminates repeated
metadata in the file, making the I/O easier and cheaper for both
parallel logging and any downstream analysis, further improving
the scalability of what can be interactively explored. Finally, we
have developed a web-based, interactive dashboard with the ability
to analyze and visualize profiles at high scales.

2 VIVEKA’S PARALLEL PROFILING

Our main innovation is in developing a scalable, low-overhead
runtime, that can facilitate the profiling of parallel applications at
high process counts Viveka presents (1) an easy-to-use annotation
AP, (2) a compact file format of profiles, and (3) a two-phase data
aggregation strategy with sub-filing. The entire workflow of Viveka

can be seen in Fig. 1.
Listing 1: Viveka minimal API listing

Viveka :: Profiler (string filename, double io_frequency ,
int file_count);

Viveka :: Event(string event_name, int is_common = 0, int
mode=0, int ite=0, string tag="");

Viveka::~Event () ;

bool Viveka:: flush ();

Our minimal API can be seen in Listing 1. The Profiler is used
to set application-specific contexts that only need to be set once for
an application at the beginning. The Event class is instantiated for
every code region to be annotated and referred to as an event. The
calling sequence of events is generated automatically. is_common
indicates if the event is called by every process (0 means true).
Furthermore, a profiler must also be able to tackle loops. We design
some optimal arguments for loop events: (1) mode (default 0, < 2)
and (2) ite (default 0). mode > 0 indicates that an event is a loop.
Its value 1 indicates measuring runtime for each iteration, whereas
2 means calculating the sum of the runtime for all loop iterations.

generfie
call-pdths

Profiles

Web-based
Visualization

Two Phase 10

-~
Annotation API

set every
seconds

I SeT aggTegator coum g

X

Figure 1: The workflow of Viveka.
All events are internally maintained in a hash-map called the
event-map where the callpath serves as the key and the value corre-
sponds to a list of attribute-class objects. The attribute class stores



all relevant data for an event, including its time profile and other
metadata. Executions repeat the entire program, whereas loops
repeat specific functions, resulting in numerous events with the
same callpath. Our usage of event-map takes advantage of them,
eliminating data redundancies. Internally, we do not create a new
key-value pair for every event with the same callpath; instead, we
add it to the existing attribute list correspondingly. We translate this
directly to our file format to minimize the size of output profiles.

O oms) s (oo = @

1)

Individual View Select Execution:  Giabalmedian

- 66 (53280) 2P (8T T
(a) CCT View (b) Distribution view

ave (55857) i (18:385)

Figure 2: (1) Visualization with linked views.

Subfiling [4] is a known technique, wherein the number of files
outputted is kept as a tunable parameter between 1 and P (P: process
count). We observe the performance degradation with Caliper’s
file I/O (single-file I0). This problem can be alleviated via data
aggregation [6], where only a selected set of processes (known as
aggregators) perform all the necessary I/O operations. In order to
attain a balance between all these performance-related parameters,
we implement a customized two-phase data aggregation strategy
along with sub-filling. We aggregate data from all processes to a
tunable number of aggregators process, each of which writes data
to an independent file concurrently.

3 VIVEKA WEB-BASED VISUALIZATION

Our visualization tool contains four linked views, including (1) the
CCT view (for understanding and analyzing the structure of pro-
grams) (Fig. 2(a)), (2) the distribution view (complements the CCT
view by helping in understanding how the runtime is distributed
across the events) (Fig. 2(b)), (3) the process view (illustrates the
per-process performance for a selected CCT node) (Fig. 2(c)), and (4)
the execution view (demonstrates the total runtimes of the whole
program across executions) (Fig. 2(d)), all working in conjunction
to show profiled data in an intuitive way .

Example. The execution view helps users to perceive the stabil-
ity of the application’s performance. The best, average, and median
execution results are offered by selection box without requiring
users to calculate themselves. For example, in Fig. 2(d), the first
execution result is noisy. The CCT view, in conjunction with the
distribution view, can reveal potential performance bottlenecks in
terms of events (e.g., expensive events) by investigating the views
progressively. For example, in Fig. 2, we show all children of the
event "main" at first, and the "PART" event is the most expensive
in the distribution view. We then collapsed all the offspring of this
event by clicking on it in the CCT view and found that the event
"assign” is the most expensive and a leaf node. Therefore, the event

Ke Fan and Sidharth Kumar

[ Tunable two-phase 10

10001 o Tunable two-phase 10
4.00

Time (s), log-scale
=
(=]

512256 128 64 32 16 8 4 2 1
Aggregator count / File count

4k 2k 1k 51225612864 32 16 8 4 2 1
Aggregator count / File count

Figure 3: Results for two-phase I/0 with varying aggregators.

80% 80%
0% | Ll . 60%1|
40% 40%
20% 20%

2 L P=16384 P
FIRTVRPNWPORS fiaks i ’W"IA

0%

0710 20 30 40 50 %10 20 30 4o S0 %10 20 30 40 50

s Number of eatons  Numberof eraions  Number of eraions
Figure 4: Viveka incurs minimal overhead (around 3%) at
varying scales and for different iteration counts.

"assign" in this case could be a potential performance bottleneck
that needs to be optimized. In addition, we are able to assess its run-
time percentage based on the colormap below. The process view can
then assist users in identifying load imbalance issues for each given
event (e.g., outliers) or finding out some interesting communication
patterns (e.g., odd processes are slower than even processes.).

4 EVALUATION

We conducted a series of experiments on the Theta Supercomputer
at Argonne National Laboratory to evaluate the efficacy and perfor-
mance of both Viveka’s profiling and visualization capabilities. We
use Parallel I/O [3] as our target application. The parallel I/O frame-
work is a comprehensive application that consists of a sequence
of iterable computation, communication, and I/O phases. To eval-
uate the performance of the profiling capabilities of Viveka, we
conduct (a) a benchmark of the two-phase I/O to demonstrate the
importance of the tunable data aggregation scheme and (b) over-
head analysis, to compute the overhead of profiling in a production
environment.

We evaluate the efficacy of Viveka’s tunable two-phase I/O scheme
at two process counts, P = 512 and P = 4,096. At both these scales,
we vary the total number of aggregators (and thus the total number
of files) and measure the aggregate I/O time. We vary the aggregator
count (A) from P down to 1 (P, P/2,P/4, ..., 4, 2, 1). The results for
these two sets of runs are shown in Figure 3. Both results show a
similar U - shaped trend, where the optimal performance is reached
roughly around A = P/16 aggregators.

We then evaluate the efficacy of Viveka in a production setting
where applications typically run for several time steps. In this ex-
periment, we ran the application for a varying number of timesteps
and recorded the overhead that Viveka added for all these runs.
We varied the total number of iterations from 10 to 50 and ran our
experiments at P = 1k to 32k. The results are plotted in Fig. 4. We
observe that the overhead added by Viveka remains consistent to
around 2 — 5% for all scales and iteration settings.

5 CONCLUSION

In this paper, we presented Viveka, an end-to-end system for profil-
ing and visualizing large-scale applications. Our simple annotation
API enables easy integration with parallel applications, resulting
in a compact file format. Viveka includes an interactive web-based
visualization system that allows the exploration of application pro-
files using a set of linked views.



Two-phase 10 Enabling Large-scale Introspection

REFERENCES

(1]
[2]
(3]

(4]

Laksono Adhianto et al. 2010. HPCToolkit: Tools for performance analysis of
optimized parallel programs. Conc. and Comp.: Prac. and Exp. (2010).

David Boehme et al. 2016. Caliper: performance introspection for HPC software
stacks. In Proc. of the Int. Conf. for High Perf. Comp., Net., Stor. and Anal. IEEE.
Ke Fan, Duong Hoang, Steve Petruzza, Thomas Gilray, Valerio Pascucci, and
Sidharth Kumar. 2021. Load-balancing Parallel I/O of Compressed Hierarchical
Layouts. In 2021 IEEE 28th International Conference on High Performance Comput-
ing, Data, and Analytics (HiPC). IEEE.

Kui Gao, Wei-keng Liao, Arifa Nisar, Alok Choudhary, Robert Ross, and Robert
Latham. 2009. Using subfiling to improve programming flexibility and perfor-
mance of parallel shared-file I/O. In 2009 International Conference on Parallel

Processing. IEEE, 470-477.

Suraj Kesavan, Harsh Bhatia, Abhinav Bhatele, Stephanie Brink, Olga Pearce,
Todd Gamblin, Peer-Timo Bremer, and Kwan-Liu Ma. 2021. Scalable Comparative
Visualization of Ensembles of Call Graphs. Trans. on Vis. and Comp. Graph. (2021).
Sidharth Kumar et al. 2018. Scalable data management of the Uintah simulation
framework for next-generation engineering problems with radiation. In Asian
Conference on Supercomputing Frontiers. Springer, Cham, 219-240.

Jonathan R Madsen et al. 2020. TiMemory: modular performance analysis for
HPC. In Int. Conf. on High Perf. Comp. Springer, 434-452.

Jie Shen et al. 2015. Workload partitioning for accelerating applications on het-
erogeneous platforms. IEEE Trans. on Para. and Dist. Sys. 27 (2015).



	1 Introduction
	2 Viveka's Parallel profiling
	3 Viveka Web-based Visualization
	4 Evaluation
	5 Conclusion
	References

