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Introduction

Distributed scientific workflows are data-intensive; bottleneck is usually data move-
ment through storage systems. Therefore, it is critical to understand data flow.
Many scientific datasets incorporate domain semantics with formats like HDF and
NetCDF, enhancing the interpretability and context of the data for analysts.
We shed new insight on workflow bottlenecks by understanding how semantic data
sets flow through storage.

We unveil a fresh perspective with

1. careful runtime measurement,
2. recovering the mapping of domain semantics to low-level I/O operations, and
3. effective visualization and analysis of semantic flows.
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Figure 1: HDF5 Semantic Rich Structures

HDF5’s hierarchical organization of groups, datasets, and attributes enables the
inclusion of context-rich metadata [1].
This structural design effectively conveys data relationships, and annotations, en-
hancing data’s meaning.

Challenges

Mapping Data Semantics to I/O Access
Tracking Data Flow Across Tasks
Visualizing Coordination and Time
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Approach

Step 1: Measures the key metrics to recover workflow task to data mapping.

Step 2: Uses HDF5 semantic object and file address mapping information to 
construct Semantic DAGs.

Step 3: Performance and data access related statistics are extracted. Interactive 
Sankey diagram is used to visualize lifecycle graphs.

Case Study I: DeepDriveMD

DeepDriveMD (DDMD) is a deep learning-driven molecular dynamics simulations
workflow for protein folding [2].
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Figure 2: Four-Stages Pipeline Workflow (simulation, aggregate, train, and inference).

Observation: no data dependencies between train and inference.
Opportunity: inference and train tasks can be parallelized.
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Figure 3: Aggregate Stage Close-Up TDD showing two datasets.

Observation: aggregate task changes the data layout without content change.
Opportunity: aggregate task can be removed.
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Figure 4: DDMD Train Stage Read File I/O Performance Detail.

Observation: train task not using all datasets from aggregated.h5.
Opportunities:

aggregate rearranges data not used by a downstream task.
when memory is limited, caching a subset of the aggregated.h5 does not violate
task-data dependency.

Case Study II: Storm Tracking Workflow

Storm Tracking uses a flexible atmospheric feature tracking software package [3]
for weather research and forecast datasets.
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Figure 5: Six-Stages Pipeline Storm Tracking Workflow.

Observation:

Inter-task Data Reuse: task 2, 4, and 6 uses files produced by the first task
Time-dependents inputs: some input files are only required for specific tasks
Data None-Used: file produced by task 4 is not used by any later task

Opportunity:

Tasks that use common datasets can be scheduled on the same resource
Input can be stage-in at different time points of the workflow
Files not used by later tasks can be immediately offloaded to free up memory

Conclusions

Lack automated method to comprehend data access within workflows.
Semantic DAGs: enhancing traditional DAGs by incorporating tasks and
filenames that trace the flow of semantic objects.
Gathered statistics enable analysis of performance and data access patterns,
enabling new insights on improving workflow.
Future work: focus on creating an automated approach that leverages our
enhanced understanding from this analysis to improve workflow performance.
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