
Optimizing Workflow Performance by Elucidating Semantic Data
Flow

Meng Tang
Illinois Institute of Technology

Chicago, IL, USA
mtang11@hawk.iit.edu

Nathan R. Tallent
Pacific Northwest National Laboratory

Richland, Washington, USA
tallent@pnnl.gov

Anthony Kougkas
Illinois Institute of Technology

Chicago, IL, USA
akougkas@iit.edu

Xian-He Sun
Illinois Institute of Technology

Chicago, IL, USA
sun@iit.edu

1 Extended Abstract
High-Performance Computing (HPC) workflows are becoming
more data intensive. For instance, in Sierra [2], MuMMI needs
an enormous 154 PB of storage and can reach 1.5 TB/s peak
bandwidth [6]. The way data is used in scientific workflows is
getting more complicated. Workflows can have multiple stages
with different applications doing simulation, analysis, and AI.
These applications inter-depend on each other’s generated data
and can have different workload characteristics, as we see in
Montage, DDMD, and 1000Genomic [3, 5, 10]. The current way
of transferring data between tasks in HPC is through a shared
storage layer like Parallel File System (PFS) and Burst Buffer, but
this suffers from problems like slow access and I/O contention [7].

Improving workflow data movement is a challenging task.
One can schedule workflow tasks strategically to minimize data
movements. Other effective methods, such as data caching and
staging, have also shown promise in enhancing I/O performance
by reducing computation wait times [11, 12, 14]. With more
I/O expertise, one can also utilize and fine-tune various I/O
libraries, middleware, and file system configurations. This process
often requires iterative profiling and testing. However, these
configurations are often optimized for the most general workload,
resulting in other workloads still experiencing high latency
with shared storage. The persistent challenges revolve around
understanding task-data locality and comprehending the data
access characteristics of different applications.

Understanding I/O behavior is imperative when deciding on the
correct strategies to enhance data access. Details about data access
within workflow tasks can effectively guide improvements in I/O
and system configuration. Some tools, such as Darshan [4] and
Recorder [13], help in profiling and understanding an application’s
I/O performance. However, there is a lack of tools that analyze how
data is accessed across tasks in a workflow and capture semantic
information related to its low-level I/O requests. Such tools would
be valuable for providing more straightforward insights into
data access patterns across multiple tasks. By filling this gap, we
can develop better methods for managing data movement and
optimizing the overall workflow.

In this work, we unveil a fresh workflow optimization perspec-
tive with

(1) careful runtime measurement of data access metrics,

(2) recovering the mapping of domain semantics to low-level
I/O operations, and

(3) effective visualization and analysis of semantic data flows
for the complete workflow.

2 Methodology
2.1 Hierarchical Data Format version 5 (HDF5)
HDF5 is a widely used storage format in scientific applications. Its
hierarchical structure of groups, datasets, and attributes, allows
enriched metadata that describes different data characteristics
[9]. Additionally, HDF5 library provides extensive API enabling
tracking of its high-level data object and the low-level I/O.

2.2 Semantic DAGs and Analysis
Semantic DAGs enhance traditional DAGs by including tasks, file-
names, and the flow of semantic objects from input files through
tasks to output files. Generating Semantic DAGs with performance
metrics involves three steps:

(I) Measure data access metrics from a workflow and construct
task-data dependency DAG. DAG use task and data vertices, with
task execution orders shown from left to right. Sankey diagrams [1]
are used to visualize lifecycle graphs.

(II) Two additional layers of vertices are used to show the recov-
ered mapping between HDF5 semantic data and the POSIX-level
data location in a file. Data and file vertices are also arranged by
last-accessed time.

(III) Performance statistics for data access and I/O are extracted
from measurements from both layers. At the semantic object level,
where data is accessed in memory, access count and data volume
shows the in-memory access stats. On the file level, access count
and volume reflect application-to-storage I/O metrics. Bandwidth
calculations are indicated by varying lightness of the graph edges.

3 Case Study I: DDMD
DeepDriveMD is a deep learning-driven molecular dynamics sim-
ulations workflow for protein folding [? ]. It consists of a four-stage
pipeline including MD simulation and ML-guided sampling.

Figure 1 depicts a single iteration of the 4-stage pipeline, which
includes 12 OpenMM simulation tasks, Aggregate, Train, and Infer-
ence from left to right. In the OpenMM stage, each task generates

https://orcid.org/0009-0003-5995-6947
https://orcid.org/xxx


M Tang et al.

files tasks edges (darker color higher bandwidth) no data dependency 
between tasks

Figure 1: Four-Stages Pipeline Workflow (simulation, aggre-
gate, train, and inference).

files

tasks edges (darker color higher bandwidth)

fnc: dataset function

pc: dataset point_cloud

rmsd: dataset root mean square deviation no contact_map dataset

Figure 2: DDMD Train Stage Read File I/O Performance De-
tail.

an HDF5 file, and each file contains four different datasets (con-
tact_map, point_cloud, fnc, rmsd). The edges are shown with differ-
ent lightness of blue, with light edges indicating lower bandwidth
and vice versa.
Observation 1: No data dependencies between Train and Inference
tasks, as we can see that both of them reads input aggregated.h5,
and output different sets of files that are not used by each other.
Opportunities 1: Inference and Train tasks can be parallelized
without violating data dependency correctness.

Figure 2 shows Train accessing the aggregated.h5 file, with
datasets and performance details. Since each dataset is recorded
as HDF5 objects that are in memory, the statistics shown here
are memory access size performance. The datasets access order is
shown with time progression from left to right on the x-axis.
Observation 2: With a detailed look at the data flow of Aggregate,
we can see that it reads and writes the same content but slightly
rearranges the logical file address of the two datasets. From figure
3 shown in Poster we know that over 95% of the data volume is
from the contact_map dataset, while only small amount is from the
point_cloud dataset. Figure 2 reveal that Train task is not using the
dataset contact_map. This means the Train task only using a small
amount of the data in the aggregated.h5, which further indicates
that the aggregate task is not necessary.
Opportunity 2: (1) Since Aggregate is rearranging data without
meaningful usage for the downstream tasks, removing this task
can reduce unnecessary data movement. (2) Removing Aggregate
task may also improve data access parallelism, where data are
being accessed from the 12 files generated by each OpenMM task,
rather then accessed through a single aggregated.h5 file. (3) When
opening up a single HDF5 file, datasets are often prepared into
memory before being accessed by the application. And in the case
when memory resources become limited in larger experiment
workloads, offloading the dataset contact_map during Train ensure
more efficient memory usage.

files

tasks

edges : bandwidth [74.53 KB/s, 17.88 MB/s]
(darker color higher bandwidth)

files used by 3 later tasks

Input files required at 
only specific time

file not used by later tasks

Figure 3: Six-Stages Storm Tracking Workflow.

3.1 Case Study II: Storm Tracking Workflow
Storm Tracking uses a flexible atmospheric feature tracking soft-
ware package [8] for weather research and forecast datasets. The
complete workflow typically consists of a 6 to 9 stages sequential
pipeline.

Figure 3 shows a six-stage pipeline DAG, where each stage con-
sists of one task, and each stage is executed sequentially. Same as
in previous figures, edge color lightness indicates the bandwidth of
data access. But time for each file is not presented with the x-axis.
Observation: Here we can see three patterns, (1) inter-task Data
Reuse, (2) time-dependent inputs, and (3) data non-used. (1) is
shown in tasks 2, 4, and 6. They are reading files generated from
the first task, in addition to other files generated by their previous
tasks. For (2) we can see from the first set of input files and the top
input file for the last task, that not all input files are required at the
very beginning of the workflow. We can see that task 4 produces a
file that is not used by any later tasks, which corresponds to (3).
Opportunity: There are three opportunities for the above three ob-
servations respectively. For (1) we can schedule tasks that use com-
mon input datasets on the same compute resources to reduce data
movement between tasks. For (2) we can stage-in the inputs at differ-
ent time points of the workflow execution timeline. For (3) we can
offload the data that is not used by later tasks immediately to free up
memory when memory becomes a limited resource in the workflow.

4 Conclusion
Nowadays in HPC applications, there is lacks of tools to under-
stand data flow between tasks in a workflow. This study introduced
Semantic DAGs, an enriched version of traditional DAGs. Precise
measurements allowed us to reconstruct mappings between tasks
and meaningful data objects down to low-level file addresses. With
careful measurement, reconstruction of data objects to file address
mapping, and extracted performance statistics, we can gain new
insight for new workflow optimization opportunities.
Our future work will focus on improving the analysis method and
developing an automatic approach for intelligent data placement
in workflows.

Acknowledgments
This research is supported by the U.S. Department of Energy (DOE)
through the Office of Advanced Scientific Computing Research’s
“Orchestration for Distributed & Data-Intensive Scientific Explo-
ration.” Also, the material is based upon work supported by the
National Science Foundation under Grant no. NSF CSSI-2104013.



Optimizing Workflow Performance by Elucidating Semantic Data Flow

References
[1] [n. d.]. Sankey Diagrams. https://www.data-to-viz.com/graph/sankey.html.

Accessed: 2023-03-15.
[2] [n. d.]. Sierra. https://hpc.llnl.gov/hardware/compute-platforms/sierra
[3] GB Berriman, JC Good, AC Laity, A Bergou, J Jacob, DS Katz, E Deelman, C

Kesselman, G Singh, M-H Su, et al. 2004. Montage: A grid enabled image mo-
saic service for the national virtual observatory. In Astronomical Data Analysis
Software and Systems (ADASS) XIII, Vol. 314. 593.

[4] Philip Carns, Kevin Harms, William Allcock, Charles Bacon, Samuel Lang, Robert
Latham, and Robert Ross. 2011. Understanding and improving computational
science storage access through continuous characterization. ACM Transactions
on Storage (TOS) 7, 3 (2011), 1–26.

[5] Laura Clarke, Xiangqun Zheng-Bradley, Richard Smith, Eugene Kulesha, Chunlin
Xiao, Iliana Toneva, Brendan Vaughan, Don Preuss, Rasko Leinonen, Martin
Shumway, et al. 2012. The 1000 Genomes Project: data management and com-
munity access. Nature methods 9, 5 (2012), 459–462.

[6] Francesco Di Natale, Harsh Bhatia, Timothy S Carpenter, Chris Neale, Sara
Kokkila-Schumacher, Tomas Oppelstrup, Liam Stanton, Xiaohua Zhang, Shiv
Sundram, Thomas RW Scogland, et al. 2019. A massively parallel infrastructure
for adaptive multiscale simulations: modeling RAS initiation pathway for cancer.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. 1–16.

[7] Jack Dongarra, Pete Beckman, Terry Moore, Patrick Aerts, Giovanni Aloisio,
Jean-Claude Andre, David Barkai, Jean-Yves Berthou, Taisuke Boku, Bertrand
Braunschweig, et al. 2011. The international exascale software project roadmap.
The international journal of high performance computing applications 25, 1 (2011),
3–60.

[8] Zhe Feng, Joseph Hardin, Hannah C Barnes, Jianfeng Li, L Ruby Leung, Adam
Varble, and Zhixiao Zhang. 2022. PyFLEXTRKR: a Flexible Feature Tracking
Python Software for Convective Cloud Analysis. EGUsphere (2022), 1–29.

[9] Mike Folk, Gerd Heber, Quincey Koziol, Elena Pourmal, and Dana Robinson. 2011.
An overview of the HDF5 technology suite and its applications. In Proceedings of
the EDBT/ICDT 2011 workshop on array databases. 36–47.

[10] Hyungro Lee, Matteo Turilli, Shantenu Jha, Debsindhu Bhowmik, Heng Ma,
and Arvind Ramanathan. 2019. DeepDriveMD: Deep-Learning Driven Adaptive
Molecular Simulations for Protein Folding. In 2019 IEEE/ACM Third Workshop
on Deep Learning on Supercomputers (DLS). 12–19. https://doi.org/10.1109/
DLS49591.2019.00007

[11] Pradeep Subedi, Philip Davis, Shaohua Duan, Scott Klasky, Hemanth Kolla, and
Manish Parashar. 2018. Stacker: an autonomic datamovement engine for extreme-
scale data staging-based in-situ workflows. In SC18: International Conference for
High Performance Computing, Networking, Storage and Analysis. IEEE, 920–930.

[12] Qian Sun, Tong Jin, Melissa Romanus, Hoang Bui, Fan Zhang, Hongfeng Yu, He-
manth Kolla, Scott Klasky, Jacqueline Chen, and Manish Parashar. 2015. Adaptive
data placement for staging-based coupled scientific workflows. In Proceedings
of the International Conference for High Performance Computing, Networking,
Storage and Analysis. 1–12.

[13] Chen Wang, Jinghan Sun, Marc Snir, Kathryn Mohror, and Elsa Gonsiorowski.
2020. Recorder 2.0: Efficient parallel I/O tracing and analysis. In 2020 IEEE
International Parallel and Distributed Processing Symposium Workshops (IPDPSW).
IEEE, 1–8.

[14] Teng Wang, Suren Byna, Bin Dong, and Houjun Tang. 2018. UniviStor: Inte-
grated hierarchical and distributed storage for HPC. In 2018 IEEE International
Conference on Cluster Computing (CLUSTER). IEEE, 134–144.

https://www.data-to-viz.com/graph/sankey.html
https://hpc.llnl.gov/hardware/compute-platforms/sierra
https://doi.org/10.1109/DLS49591.2019.00007
https://doi.org/10.1109/DLS49591.2019.00007

	1 Extended Abstract
	2 Methodology
	2.1 Hierarchical Data Format version 5 (HDF5)
	2.2 Semantic DAGs and Analysis

	3 Case Study I: DDMD
	3.1 Case Study II: Storm Tracking Workflow

	4 Conclusion
	Acknowledgments
	References

