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Abstract

Chimbuko is a framework for real-time detection of performance anomalies in 

large-scale workflow applications. Detection of performance anomalies can aid 

in discovery of algorithmic inefficiencies or potential software/hardware issues 

in an application's environment. In this study, we investigate the applicability of 

graph-based deep learning methods for anomaly classification. We 

hypothesize that transforming tabular performance data into a graph will allow 

sample correlations to be modelled implicitly, thus allowing graph-based deep 

learning methods to be build more effective embeddings. We propose to 

map events to nodes and calculate edge weights using distance between 

features. Our evaluations show that the proposed method achieves 93% 

classification accuracy compared to 80% for the state-of-the-art baseline 

approach, demonstrating graph-based anomaly detection technique is not only 

feasible, but also beneficial.

Evaluation of Graph-based Anomaly Classification

Our Approach

Feature Importance and Model Explanation

• There is a higher importance for features related to time and memory

• Time metrics are used to determine when to label an event as 

anomalous so are expected to correlate with an event's label

• Anomalous events occur when there is less free memory available

• Anomalies occur during high CPU usage

Objective: Identify the important features and rank them using feature 

importance analysis

• Edges are weighted by feature similarity. Dotted edges 

means less influence; solid edges represents higher influence

• Generated embeddings reflect relationships among nodes

• Neighbors of a node tend to share the same label

F1 Prec Recall​ Accuracy

GAT​ 80.42%​ 80.31%​ 80.53%​ 77.86%

GCN​ 87.11%​ 86.88%​ 87.34%​ 85.44%

SAGE​ 95.69%​ 96.06%​ 95.31%​ 95.10%

XGBoost 

(baseline)

82.28% 81.06% 83.57% 79.55%

Objective: Explain why a sample was classified as anomalous using the 

Graph Neural Network-based model

Goal
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Event Information

• CallStack

• FID

• FUNC

• EXIT

• ….

• IS_ANOMALY

• PID

• COUNTER_EVENTS

• . . .

• Graph Embeddings: A per-node low dimensional 

representation which combines the node's 

features with features from neighboring nodes

• Provenance Database: A schema storing 

metadata about anomalous and normal 

executions and can be represented conceptually 

as a table. The figure on the right is an example 

of the metadata per sample.

Objective: Evaluate the effectiveness of graph-based techniques 

compared to the state-of-the-art methods in anomaly classification

• Investigate Graph-based Representation Learning techniques for 

improving the accuracy of performance anomaly classification

• Provide insights into the classification model's decision-making process

Non-graph-based 

classifier

Graph-based 

Node Classifier
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• Use more baselines

• Other distance measures

• Problem formulation: Classify nodes in the graph using their features

• Rationale: Graph edges capture sample correlations explicitly resulting in 

feature representations (embeddings) that capture salient information. The 

better the embeddings, the more accurate the classifier.

• Challenge: Performance graph is not given

• Contribution: Methodology for graph construction and modeling

Step 1: Graph construction

• Performance events ⇒ nodes

• Edge weights ⇒ feature similarity

• Label: f: V ⇒ D (anomalous or normal)

Step 2: Modeling

• Graph neural network for representation learning

• 5-fold cross-validation and stratified sampling

• Graph based methods outperform XGBoost as XGBoost does not 

leverage feature relationships across events

• GraphSAGE aggregates a weighted sum of features from k-hop 

neighbors, while GCN and GAT aggregate features from 1-hop away 

missing correlations across large number of samples

      

      

      

            

      

Baseline classifier working 

on the tabular data

Event ⇒ node
Provenance Database ⇒ table
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