
Graph Based Anomaly Detection in Chimbuko:
Feasible or Fallible?

Chase Phelps1, Ankur Lahiry1, Tanzima Z. Islam1, Christopher Kelly2

1Texas State University, 2Brookhaven National Laboratory​

Abstract

Chimbuko is a framework for real-time detection of performance anomalies in

large-scale workflow applications. Detection of performance anomalies can aid

in discovery of algorithmic inefficiencies or potential software/hardware issues

in an application's environment. In this study, we investigate the applicability of

graph-based deep learning methods for anomaly classification. We

hypothesize that transforming tabular performance data into a graph will allow

sample correlations to be modelled implicitly, thus allowing graph-based deep

learning methods to be build more effective embeddings. We propose to

map events to nodes and calculate edge weights using distance between

features. Our evaluations show that the proposed method achieves 93%

classification accuracy compared to 80% for the state-of-the-art baseline

approach, demonstrating graph-based anomaly detection technique is not only

feasible, but also beneficial.

Evaluation of Graph-based Anomaly Classification

Our Approach

Feature Importance and Model Explanation

• There is a higher importance for features related to time and memory

• Time metrics are used to determine when to label an event as

anomalous so are expected to correlate with an event's label

• Anomalous events occur when there is less free memory available

• Anomalies occur during high CPU usage

Objective: Identify the important features and rank them using feature

importance analysis

• Edges are weighted by feature similarity. Dotted edges

means less influence; solid edges represents higher influence

• Generated embeddings reflect relationships among nodes

• Neighbors of a node tend to share the same label

F1 Prec Recall​ Accuracy

GAT​ 80.42%​ 80.31%​ 80.53%​ 77.86%

GCN​ 87.11%​ 86.88%​ 87.34%​ 85.44%

SAGE​ 95.69%​ 96.06%​ 95.31%​ 95.10%

XGBoost

(baseline)

82.28% 81.06% 83.57% 79.55%

Objective: Explain why a sample was classified as anomalous using the

Graph Neural Network-based model

Goal

Background

This material is based upon work supported by the U.S. Department of Energy, Office of Science under Award Number DE-SC0022843 and DE-SC0023173. The work was also supported in part by the Exascale Computing Project

(ECP) funded by the U.S. Department of Energy Office of Science. Special thanks to the Sustainable Horizons Institute for the support. Not export controlled.

Event Information

• CallStack

• FID

• FUNC

• EXIT

• ….

• IS_ANOMALY

• PID

• COUNTER_EVENTS

• . . .

• Graph Embeddings: A per-node low dimensional

representation which combines the node's

features with features from neighboring nodes

• Provenance Database: A schema storing

metadata about anomalous and normal

executions and can be represented conceptually

as a table. The figure on the right is an example

of the metadata per sample.

Objective: Evaluate the effectiveness of graph-based techniques

compared to the state-of-the-art methods in anomaly classification

• Investigate Graph-based Representation Learning techniques for

improving the accuracy of performance anomaly classification

• Provide insights into the classification model's decision-making process

Non-graph-based

classifier

Graph-based

Node Classifier

ReferencesFuture Work

• Kelly, C., et al. (2020). Chimbuko: A workflow-level scalable
performance trace analysis tool. In ISAV'20 In Situ

Infrastructures for Enabling Extreme-Scale Analysis and

Visualization (pp. 15-19).​

• Use more baselines

• Other distance measures

• Problem formulation: Classify nodes in the graph using their features

• Rationale: Graph edges capture sample correlations explicitly resulting in

feature representations (embeddings) that capture salient information. The

better the embeddings, the more accurate the classifier.

• Challenge: Performance graph is not given

• Contribution: Methodology for graph construction and modeling

Step 1: Graph construction

• Performance events ⇒ nodes

• Edge weights ⇒ feature similarity

• Label: f: V ⇒ D (anomalous or normal)

Step 2: Modeling

• Graph neural network for representation learning

• 5-fold cross-validation and stratified sampling

• Graph based methods outperform XGBoost as XGBoost does not

leverage feature relationships across events

• GraphSAGE aggregates a weighted sum of features from k-hop

neighbors, while GCN and GAT aggregate features from 1-hop away

missing correlations across large number of samples

Baseline classifier working

on the tabular data

Event ⇒ node
Provenance Database ⇒ table

Our

Proposed

approach

	Slide 1: Graph Based Anomaly Detection in Chimbuko: Feasible or Fallible?​

