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Abstract
Detection of performance anomalies can aid in discovering al-

gorithmic inefficiencies or potential hardware issues in an appli-
cation’s environment. The Chimbuko framework monitors large-
scale workflow applications in real-time and identifies function
executions which deviate from accumulated statistics (performance
anomalies). Performance anomalies across runs correlate with vari-
ation in execution times of an application; quicker resolution of
performance anomalies caused by hardware issues improves clus-
ter performance. Anomalous and normal executions are stored as
events in Chimbuko. In this study, we investigate the applicability
of graph-based deep learning methods for anomaly classification.
We hypothesize that transforming data into a graph will allow
correlations to be modeled, thus allowing graph-based methods
to learn embeddings that can improve the effectiveness of down-
stream anomaly classification tasks. We propose to map events
to nodes and calculate edge weights using the distance between
features. Our evaluations demonstrate that the graph-based meth-
ods yield up to 95% accuracy and outperform a state-of-the-art
gradient-based method. Moreover, we provide an explanation of
the classification model’s decision-making process through explain-
able AI techniques.
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1 Introduction
Chimbuko [7] is a real-time anomaly detection framework that

aims to detect anomalies in the performance of large-scale applica-
tions. In this context, a performance anomaly refers to a deviation
from accumulated statistics of the execution time of a function to a
new event’s execution time. The Chimbuko framework uses the
Histogram-based Outlier Score (HBOS) algorithm [4] by default to
detect performance anomalies; anomalous events and other events
within a configurable execution window are stored in a persistent
database called the Provenance Database (ProvDB). Each event in-
cludes features such as the rank id, process id, entry timestamp,
hardware performance counters collected during execution, and
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available information provided by the operating system, i.e., counter
information from the /proc filesystem. The combined corpora of
anomalous and normal executions in the ProvDB is a rich labeled
dataset that can advance the state-of-the-art in deep learning-based
anomaly classification algorithm development.
In this work, we propose a novel idea of representi ng

performance samples as a graph to leverage correlations
between samples and features when classifying a new perfor-
mance sample. Unlike other domains, e.g., social networks, such
a graph does not exist. Hence, we propose a method to construct a
performance graph by mapping performance samples as nodes and
the distance between their features as their edge weights. Following
graph construction, we propose to leverage Graph Neural Network
(GNN) based approaches, specifically GraphSAGE (GraphSAGE),
for learning node embeddings to classify the label of a node.
We evaluate the effectiveness of our proposed approach using

Chimbuko’s labels as the ground truth. Our experiments demon-
strate that our proposed graph-based anomaly classification tech-
nique outperforms XGBoost [3], a state-of-the-art method used in
the literature for tabular data.
2 Related Work and Background

A related work, TabGNN [5], creates a heterogeneous graph from
tabular data for classification, but incurs a significant overhead that
is not scalable and achieves a much lower relative performance
increase compared to Graph Attention Network (GAT) and Graph
Convolution Network (GCN) than we do with GraphSAGE.
ProvDB: Of the information provided by Chimbuko, e.g., the call
stack and elapsed time, we only consider numerical features that
have variance and are not nominal or ordinal. In the future, we will
also leverage call stack distance in our graph-building method.
Embeddings: Since the time to build a model depends on the size
of this input vector, deep-learning pipelines project the original fea-
tures into a low-dimensional space called embeddings. A descriptive
embedding makes the downstream analytics task effective.
3 Design and Implementation
We formulate the problem of anomaly classification as that of

node classification, where a graph-based deep learning model can
predict the label of a node based on its embeddings.

Graph Construction: As Figure 1a shows, we map each event
in the tabular dataset to a node and columns as a feature vector. We
add edges between nodes and neighboring nodes with the 𝑛 nearest
distances, as determined by the normalized Euclidean distance
between all features. Here, 𝑛 is a configurable parameter; we use
𝑛 = 3 for this work. The constructed graph induces relationships
between execution events labeled as anomalous or normal. Next, we
propose to use this graph as input to a graph-based representation
learning technique such as GNN to learn an embedding for each
node of the graph.
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F1 Precision Recall Accuracy

GAT 80.42% 80.31% 80.53% 77.86%

GCN 87.11% 86.88% 87.34% 85.44%

SAGE 95.69% 96.06% 95.31% 95.10%

XGBoost 82.28% 81.06% 83.57% 79.55%

(b) Classification accuracy
AnomalyNormal

Figure 1: Overall view of our research.

Training: During model training, we split the indices of anoma-
lous and normal events into 5-random train-test-validation sets,
evaluate the models on each disjoint test set, and report the average
accuracy along with F1 score, precision, and recall. While splitting
the dataset, we balance the number of samples per class to avoid
creating any class bias. This strategy is important for the anomaly
datasets as Chimbuko collects many more anomalous samples than
normal execution samples. Training is performed on the training
data, the validation scores are used to monitor progress, and the
model with the highest validation score used during testing.
4 Preliminary Results
We use a unique tabular anomaly dataset collected by running

the Grid [2, 11] application, a highly optimized parallel code for
lattice QCD simulations, with Chimbuko. The dataset contains a
total of 3, 349 events, with 1, 905 anomalous and 1, 444 normal exe-
cutions. We experiment with 3 graph-based classification models,
GAT [10], GCN [8], and GraphSAGE [6], and compare our results to
the baseline—XGBoost [3], known to work well with tabular data.
Accuracy: Figure 1b shows that both GCN (85%) and Graph-

SAGE (95%) perform better than XGBoost (80%). This observation
supports our hypothesis; modeling relationships explicitly using a
graph improves the accuracy of the downstream classification task.

Feature Importance: Figure 1c shows the feature importance
of the XGBoost classifier as determined through the SHAP [1,
9] library. The left figure shows that the classifiers identify the
outlier_severity and TIME variables, the inclusive and exclusive
runtime of a function, respectively, as important. The right-hand

figure in Figure 1c shows that anomalous events tend to occur with
less free memory and virtual memory size.

Model Explanation: In this work, we leverageGNNExplainer [12]
to explain the GraphSAGE model’s decision to classify a node as
normal or anomalous. Figure 1d depicts two randomly selected
nodes of the graph, their incoming edges, and their relative weights.
We visualize the edge weights with thicker lines indicating a greater
weight and dotted lines indicating less weight. Figure 1d shows that
our graph construction process based on feature distance groups
nodes with similar labels, which XGBoost does not. In addition,
GraphSAGE outperforms both GAT and GCN because GraphSAGE
learns a function to generate embeddings for local neighborhoods
k-hops away compared to GAT and GCN that create node em-
beddings through neighborhood feature aggregation 1-hop away.
In the future, we will compare the graph-based method with an
encoder-based approach such as Variational Autoencoders.
5 Conclusion
In this research, we propose a novel approach of transforming

performance data into a graph for improving anomaly classification
accuracy. We design and develop a graph construction technique;
learn embeddings using GraphSAGE; compare the performance of
graph-based models with that of a state-of-the-art tabular model.
Our graph-based learning approach outperforms XGBoost by more
than 15%. In the future, we will evaluate our approach on more
datasets and compare our results with additional models, including
TabGNN.
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