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In cancer biology, large amounts of high dimensional data (genomic, transcriptomic, proteomic, phenotypic, etc.) are required for any
computationally relevant work. The problem is further complicated by the sheer size of the human genome, roughly three billion
base pairs long. Therefore, computation is time-consuming and data-intensive. To solve this problem for human colorectal cancer, we
are implementing a machine learning engine that is based on inverse reinforcement learning, and includes several different kinds
of neural networks to perform data preparation, training, and prediction. Our work aims to reconstruct the progression of tumor
development in a sample, and predict the next steps of its evolution, to aid in diagnosis and treatment. This poster will be presented as
a work in progress methodology.

CCS Concepts: • Inverse Reinforcement Learning; • Long Short Term Memory; • Bidirectional Encoder-Decoder network; •
Tokenizers; • Transformers;

Additional Key Words and Phrases: Cancer biology, Inverse Reinforcement Learning, Siamese encoder-decoder network, bidirectional
PhyloWGS, Augur Pipeline, expert demonstrations, GISAID, Long Short Term Memory, embeddings, reward function, DNABERT-2,
HyenaDNA, GenSLM, Markov Decision Process

Complex systems consist of many interacting agents, resulting in conglomerations of higher-level behaviors known
as collective effects. Collective effects manifest as emergent properties that originate from the nature of the underlying
dynamics of the system without any apparent central driving force [2] [5] [6]. The underlying principles of collective
effects create order in living systems across all scales, from biomolecules to people. The same principles dictate the
behavior of diseases ranging from viral infections to cancer. For instance, cellular population-level dynamics lead to
cancer evolution in patients over time. We propose a model capable of effectively predicting cancer progression by
using biological feature representations for clinical use.

Traditional efforts to understand the molecular biology of disease focus on observing simple correlations between
a protein function and a disease, followed by decades of validation in different animal models. These static classical
approaches usually address disease emergence or a particular stage in its progression. However, disease progression
implies a temporal process marked by evolutionary changes in the underlying mechanisms of the disease. Dynamic
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approaches, such as Bayesian methods, Markov chain modeling, and various machine learning techniques, focus on
characterizing a small number of well-defined stages of disease via critical mutations in a few genes and predicting
the overall clinical outcome (e.g. survival, likelihood of recurrence) or binary classification (e.g. drug responders vs.
non-responders) [3] [8]. These approaches are not designed to unravel the complexity of the entire evolutionary
process that gradually drives disease progression via individual mutations, as is the case in cancer. Furthermore, these
approaches offer limited insight into specific molecular mechanisms of disease.

Machine learning approaches are uniquely suited to the biomedical field due to the biological complexity of disease
phenotypes [4] [9]. In the case of cancer, genomic variants, rearrangements, and clonal behavior affect tumor phenotypes.
The interplay of these characteristics inhibit mutation identification efforts. Consequently, cancer research operates in
a vast parameter space, rendering pure statistical approaches insufficient. Artificial intelligence offers a promising tool
to reduce dimensionality and noise, simplifying research efforts [1] [10].

Specialized inverse reinforcement learning (IRL) algorithms parallel the step-by-step accumulation of somatic
alterations in cancer evolution, distinguishing this approach from other machine learning methods. IRL attempts to
estimate the reward function of a Markov decision process (MDP) from examples provided by an "expert demonstration"
of optimal behavior, such as effective cancer cell replication. For cancer, this reward function represents the possible
sequences of mutations through which cancer evolves, or traverses through its phylogenetic tree, assigning transition
probabilities for everymutation. The time-ordered paradigm of IRL enables identification of potential causal relationships
in carcinogenesis. Specifically, the reward function can be used to approximate the most influential causal mechanisms
within clonal populations of cancer tumor cells. In contrast to previously used methods relying on association alone,
which can only hypothesize co-occurrence, we propose the application of IRL to reconstructing the evolutionary
history of a tumor. This paradigm-shifting AI approach can significantly improve our understanding of the molecular
mechanisms of disease, allow us to accurately predict its course of progression, and enable more effective drug target
identification for treatment. Our prior implementation of IRL demonstrates success in colorectal cancer progression
prediction, but requires impractical amounts of time and computational resources [7].

We introduce efficient DNA encoding methods based on bidirectional encoder representations from transformers,
convert existing code from Java and C to Python in order to enable parallel execution on multiple GPUs, and rewrite
existing IRL implementations in terms of neural network approximations of reward functions. Furthermore, we leverage
Oracle Cloud allocations to conduct an extensive parameter search to optimize neural network hyperparameters. Overall,
these changes reduce the computational requirements, allowing use of larger amounts of data to obtain representation
of features across numerous types of cancer.

Our proposed algorithm affords oncology researchers three major advantages over extant approaches. First, IRL
identifies the molecular time-ordered events of cancer progression at unprecedented single-mutation resolution, rather
than reducing complex mechanisms to univariate approximations. Second, IRL is generative. While a traditional classifier
can only consume data and return a label, our model offers the novel feature of forward-simulating cancer progression,
effectively predicting future tumor development. Third, the encoding schema improvements and code parallelization on
GPUs, increase algorithm speed, making IRL usable on a clinically relevant time scale. We will use these advantages to
understand the causal relationships implied by the learned parameters of the model-free paradigm, closing the distance
between model performance and scientific insight.
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