

Introduction

TEXAS A&M UNIVERSITY®

- (KPC) K-Path Centrality measures information flow along simple paths in a graph [1].
- Estimation involves sampling numerous random paths of length at most K.
- KPC estimation effectively identifies highbetweenness vertices in many graphs [1].
- Used in various graph problems due to its computational efficiency [2],[3],[4].
- Requires a large number of path samples for large graphs.
- Introducing the RaNT-Graph: a distributed data structure for efficient path sampling.
- RaNT-Graph three comprises key components:
 - 1. Vertex delegation partitioning [5]
 - 2. Rejection sampling
 - 3. Asynchronous communication [6].
- Experiments written with YGM [5] to support MPI based communication.
- Utilized LLNL's Catalyst cluster with compute nodes having dual Intel Xeon E5-2695v2 processors (24 cores, 128GB DRAM).
- Table 1 presents graph details: vertices (n), edges (m), largest degree vertex (d_{max}) , sampled paths (T), and max path length (K).
- Compared RaNT-Graph to 1D partitioning with rejection sampling (1D-Rej) and without (1D-No-Rej).
- Figure 2 illustrates weak scaling on R-MAT graphs. 1D-Rej, 1D-No-Rej, and RaNT-Graph-50K sample 50K per compute node. RaNT-Graph samples 1M path compute node.
- Figure 3 shows strong scaling using graphs from Ta

Scaling K-Path Centrality using **Optimized Distributed Data Structure**

Lance Fletcher (TAMU & LLNL), Trevor Steil (LLNL), Roger Pearce (LLNL & TAMU)

- communication [5].
- neighbor.
- the current vertex.
- Stepping to an undelegated vertex v sends the path to the processor which owns v.

processors is $p_2 \rightarrow p_3 \rightarrow p_3 \rightarrow p_1 \rightarrow p_0 \rightarrow p_0$.

paths	Orkut	3IVI	11/IVI	33K	/4IVI	18	
hs per	LiveJournal	4.85M	43M	20K	102M	18	
	Twitter	42M	1.2B	3M	580M	21	
	Friendster	66M	1.8B	5.2K	857M	22	
able 1.	web-cc12-hostgraph	89M	1.9B	3M	1B	22	
	Uk-2007-05	106M	3.3B	975K	1.2B	22	_
							1

by Lawrence Livermore National Laboratory under Contract DE-AC52 07NA27344 (LLNL-POST-855041). Funding from LLNL LDRD project 21-ERD-020 was used in this work

Fig. 3: Strong scaling experiment. *On these graphs 1D-Rej and 1D-No-Rej values estimated by sampling 1M paths and extrapolating based on desired number of paths T. RaNT-Graph provides a substantial speedup when the graph contains a large d_{max} .

Lawrence Livermore National Laboratory

Discussion

RaNT-Graph can sample large amounts of simple paths, but it can also be used to sample walks.

This and extending RaNT-Graph to weighted graphs allows it to be used for

- Personalized PageRank
- DeepWalk
- node2vec.

Future optimizations include making use of co-located edges and other sampling techniques.

References

11 T. Alahakoon, R. Tripathi, N. Kourtellis, R. Simha, and A. Jamnitchi, "K-path centrality: A new centrality measure i social networks," in Proceedings of the 4th Workshop on Social Network Systems, ser. SNS '11. New York, NY, USA: Association for Computing Machinery, 2011.

[2] A. Biswas and B. Biswas, "Community-based link prediction," Multimedia Tools and Applications, vol. 76, no. 18, pp.

[3] P. De Meo, E. Ferrara, G. Fiumara, and A. Provetti, "Enhancing community detection using a network weighting strategy," Information Sciences, vol. 222, pp. 648–668, Feb. 2013.

[4] -, "Mixing local and global information for community detection in large networks," Journal of Computer and Svstem Sciences, vol. 80, no. 1, pp. 72–87, Feb. 2014.

[5] R. Pearce, M. Gokhale, and N. M. Amato, "Faster Parallel Traversal of Scale Free Graphs at Extreme Scale with Vertex Delegates," in SC '14: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, Nov. 2014, pp. 549–559, iSSN: 2167-4337.

[6] B. Priest, T. Steil, G. Sanders, and R. Pearce, "You've got mail (ygm): Building missing asynchronous communication primitives," in 2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), 2019, pp.