
Scaling K-Path Centrality using Optimized Distributed Data
Structure

Lance Fletcher1,2, Trevor Steil1, Roger Pearce1,2
1Center for Applied Scientific Computing (CASC), Lawrence Livermore National Laboratory (LLNL)

Livermore, CA, USA
2Department of Computer Science and Engineering, Texas A&M University

College Station, TX, USA
{fletcher28,steil1,rpearce}@llnl.gov

𝑣0

𝑝1

𝑝3

𝑝0

𝑝2

𝑣6𝑣7
𝑣9

𝑣1

𝑣11

𝑣2

𝑣5

𝑣10
𝑣8

𝑣4

𝑣12

𝑣13

𝑣3

(a)

𝑝1

𝑝3

𝑝0

𝑝2

𝑣6𝑣7
𝑣9

𝑣1

𝑣9𝑣5𝑣1

𝑣7𝑣3 𝑣8𝑣4

𝑣11

𝑣2

𝑣5

𝑣10
𝑣8

𝑣9𝑣8𝑣7𝑣6𝑣5𝑣4𝑣3𝑣2𝑣1𝑎𝑑 𝑗𝑣0 :

𝑣4

𝑣6𝑣2

𝑣12

𝑣13

𝑣3

(b)

𝑝1

𝑝3

𝑝0

𝑝2

𝑣3

𝑣4

𝑣6𝑣7
𝑣9

𝑣1

𝑣9𝑣5𝑣1
𝑣6𝑣2

𝑣7𝑣3 𝑣8𝑣4

𝑣11

𝑣12

𝑣13
𝑣2

𝑣5

𝑣10
𝑣8

(c)

Figure 1: A 1D partitioning (a) of a graph with a hub vertex 𝑣0 stored on processor 𝑝0. A vertex delegation partitioning (b) of the
same graph which shows the adjacency list 𝑎𝑑 𝑗 (𝑣0) delegated amongst all processors. The smaller adjacency list contained in
each processor’s partition represents the portion of 𝑎𝑑 𝑗 (𝑣0) owned by each processor. In (c), the dashed orange arrows are steps
of a path taken in a vertex delegation partitioned graph. The order of the vertices visited is 𝑣8 → 𝑣10 → 𝑣5 → 𝑣0 → 𝑣2 → 𝑣1, the
order of the processors visited is 𝑝2 → 𝑝3 → 𝑝3 → 𝑝1 → 𝑝0 → 𝑝0.

ABSTRACT
K-Path centrality is based on the flow of information in a graph
along simple paths of length at most K. This work addresses the
computational cost of estimating K-path centrality in large-scale
graphs by introducing the random neighbor traversal graph (RaNT-
Graph). The distributed graph data structure employs a combination
of vertex delegation partitioning and rejection sampling, enabling
it to sample massive amounts of random paths on large scale-free
graphs. We evaluate our approach by running experiments which
demonstrate strong scaling on large real-world graphs. The RaNT-
Graph approach achieved a 56,544x speedup over the baseline 1D
partition implementation when estimating K-path centrality on a
graph with 89 million vertices and 1.9 billion edges.

KEYWORDS
distributed computing, centrality, random paths, random walks

This work was performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 (LLNL-
ABS-855042). Funding from LLNL LDRD project 21-ERD-020 was used in this work.

1 INTRODUCTION
^-Path centrality (KPC) is a centrality metric based on the con-
cept of information flowing through a graph along simple paths of
length at most ^ . A simple path is one which contains no repeating
vertices. KPC assigns each vertex 𝑣 a value based on the sum of the
probabilities a simple path of length at most ^ originating from all
other vertices passes through 𝑣 [1]. Estimating KPC is done by sam-
pling many simple paths of length at most ^ and assigning a vertex
a value based on the number of paths which traverse through it.
Estimating KPC has shown to identify vertices in graphs with high
betweenness centrality [1] and has been utilized in many other
graph problems [2–5]. To estimate KPC on large graphs, many
paths must be sampled which quickly becomes computationally
expensive. In the present work, we introduce the random neighbor
traversal graph (RaNT-Graph), a distributed graph data structure
capable of sampling massive numbers of random paths and walks.

2 APPROACH
The imbalances of storage, compute, and communication are prob-
lems often associated with graph algorithms due to the non-uniform

1

SC, November 12–17, 2023, Denver, CO Lance Fletcher1,2 , Trevor Steil1 , Roger Pearce1,2

Figure 2: Strong scaling of RaNT-Graph, 1D-Rej, and 1D-No-Rej on various real world graphs where 𝑇 paths were sampled
(see Table 1). *Due to large compute time required, 1D-Rej and 1D-No-Rej values were estimated on these graphs. Times were
estimated by timing the sampling of 1M paths and extrapolating this value based on the desired amount of paths to be sampled
𝑇 as shown in Table 1.

topology present in many graphs. RaNT-Graph utilizes vertex dele-
gation partitioning [6] to mitigate these issues. Delegating a ver-
tex distributes the adjacency lists of high-degree vertices or hubs
amongst all processors in a round-robin fashion as shown in Figure
1b. This partitioning technique has been employed in a variety of
graph algorithms and has proven to help scaling capabilities [7–12].

In a 1D partitioning, each vertex is owned by a single processor.
When sampling a large amount of paths, a hub is likely to have
more paths pass through it than a lower degree vertex. Therefore,
in a 1D partitioning, processors which own hubs often must do
more work and communication than other processors. The vertex
delegation partitioning of the graph reduces these imbalances by
distributing the adjacency list of the high degree vertices.

Sampling a simple path involves recursively stepping to unvis-
ited vertices until a termination condition is met. A step involves
either stepping to an undelegated vertex or a delegated vertex.
When stepping to an undelegated vertex 𝑢, the processor which
owns 𝑢 randomly chooses the successive node. When stepping to a
delegated vertex 𝑣 , a random edge 𝑒 connected to 𝑣 must be cho-
sen first, then the processor which owns 𝑒 continues the recursive
process. Since paths are independent of each other, it is obvious
that many paths can be sampled in parallel on a distributed graph.
Figure 1c depicts both types of steps occuring in a single path.

RaNT-Graph also employs rejection sampling to quickly select
the next vertex to traverse to in a simple path. Given the current
vertex in a path 𝑣 , a vertex from 𝑣 ’s neighborhood N(𝑣) must be
chosen that has not previously been visited in the pathS. Construct-
ing the set of unvisited vertices U = N(𝑣) \ S takes 𝑂 (|N (𝑣) |)
time and can be costly for large degree vertices. Therefore, the next
vertex in a path is determined by selecting a random neighbor of 𝑣
and accepting it if it is not already present in the path. Conversely,
if the selected vertex is already in the path then a new neighbor is
chosen until an unvisited vertex is found.

Lastly, RaNT-Graph utilizes the asynchronous communication
library YGM [13] and is built upon many of the its distributed con-
tainers. YGM’s ability to increase throughput via message buffering
and it’s asynchronous communication make it ideal for algorithms
requiring irregular communication.

3 EXPERIMENTS
All experiments were conducted on LLNL’s Catalyst cluster where
each compute node is equipped with dual Intel Xeon E5-2695v2
processors totaling 24 cores and 128GB of DRAM. The network
uses an Infiniband QDR interconnect. All implementations tested
were written in C++ and utilized YGM.

To examine the strong scaling capability of the RaNT-Graph
approach, we estimate KPC on multiple large scale graphs. Table 1
shows the total vertices 𝑛, total edges𝑚, maximum degree 𝑑𝑚𝑎𝑥 ,
total paths to sample𝑇 , and the maximum path length^ .𝑇 and^ are
derived from equations proposed in the original ^-path paper [1]
where 𝑇 = ⌊2^2𝑛1−2𝛼 ln𝑛⌋ and ^ = ⌊ln(𝑛 +𝑚)⌋ with 𝛼 = 0.2. We
compare our approach with two 1D partitioned implementations,
one which uses rejection sampling (1D-Rej) and one which does not
(1D-No-Rej). As seen in Figure 2, when 𝑑𝑚𝑎𝑥 is large, RaNT-Graph
provides a substantial speedup over the 1D partitioned implemen-
tations.

Table 1: Graphs used in strong scaling experiments.

Graph 𝑛 𝑚 𝑑𝑚𝑎𝑥 𝑇 ^

Orkut [14] 3M 117M 33K 74M 18
LiveJournal [15] 4.85M 43M 20K 102M 18
Twitter [16] 42M 1.2B 3M 580M 21
Friendster [14] 66M 1.8B 5.2K 857M 22
web-cc12-hostgraph [17] 89M 1.9B 3M 1B 22
uk-2007-05 [18] 106M 3.3B 975K 1.2B 22

4 CONCLUSION
Estimating ^-path centrality can require sampling large amounts
of paths when applied to large-scale graphs. We introduce RaNT-
Graph, a novel graph data structure optimized for sampling massive
amounts of random simple paths. It combines vertex delegation
partitioning with rejection sampling to reduce compute, storage,
and communication imbalances caused by high-degree vertices.
We demonstrate the strong scalability of RaNT-Graph on multiple
large-scale real-world graphs. When compared to the baseline 1D
partitioned implementations, our approach yields up to a 56, 544×
speedup.

2

Scaling K-Path Centrality using Optimized Distributed Data Structure SC, November 12–17, 2023, Denver, CO

REFERENCES
[1] T. Alahakoon, R. Tripathi, N. Kourtellis, R. Simha, and A. Iamnitchi, “K-path

centrality: A new centrality measure in social networks,” in Proceedings of the
4th Workshop on Social Network Systems, ser. SNS ’11. New York, NY, USA:
Association for Computing Machinery, 2011.

[2] J. Blackburn, R. Simha, N. Kourtellis, X. Zuo, M. Ripeanu, J. Skvoretz, and
A. Iamnitchi, “Branded with a scarlet "C": cheaters in a gaming social network,”
in Proceedings of the 21st international conference on World Wide Web, ser. WWW
’12. New York, NY, USA: Association for Computing Machinery, Apr. 2012, pp.
81–90.

[3] P. De Meo, E. Ferrara, G. Fiumara, and A. Provetti, “Mixing local and global
information for community detection in large networks,” Journal of Computer
and System Sciences, vol. 80, no. 1, pp. 72–87, Feb. 2014.

[4] ——, “Enhancing community detection using a network weighting strategy,”
Information Sciences, vol. 222, pp. 648–668, Feb. 2013.

[5] A. Biswas and B. Biswas, “Community-based link prediction,” Multimedia Tools
and Applications, vol. 76, no. 18, pp. 18 619–18 639, Sep. 2017.

[6] R. Pearce, M. Gokhale, and N. M. Amato, “Faster Parallel Traversal of Scale Free
Graphs at Extreme Scale with Vertex Delegates,” in SC ’14: Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis, Nov. 2014, pp. 549–559, iSSN: 2167-4337.

[7] J. Zeng and H. Yu, “A Distributed Infomap Algorithm for Scalable and High-
Quality Community Detection,” in Proceedings of the 47th International Conference
on Parallel Processing, ser. ICPP ’18. New York, NY, USA: Association for
Computing Machinery, Aug. 2018, pp. 1–11.

[8] Y. Pan, R. Pearce, and J. D. Owens, “Scalable Breadth-First Search on a GPU
Cluster,” in 2018 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), May 2018, pp. 1090–1101, iSSN: 1530-2075.

[9] J. Zeng and H. Yu, “A Scalable Distributed Louvain Algorithm for Large-Scale
Graph Community Detection,” in 2018 IEEE International Conference on Cluster
Computing (CLUSTER), Sep. 2018, pp. 268–278, iSSN: 2168-9253.

[10] H. Cao, Y. Wang, H. Wang, H. Lin, Z. Ma, W. Yin, and W. Chen, “Scaling graph
traversal to 281 trillion edges with 40 million cores,” in Proceedings of the 27th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, ser.
PPoPP ’22. New York, NY, USA: Association for Computing Machinery, Mar.
2022, pp. 234–245.

[11] T. Reza, C. Klymko, M. Ripeanu, G. Sanders, and R. Pearce, “Towards Practical
and Robust Labeled Pattern Matching in Trillion-Edge Graphs,” in 2017 IEEE
International Conference on Cluster Computing (CLUSTER), Sep. 2017, pp. 1–12,
iSSN: 2168-9253.

[12] B. A. Page and P. M. Kogge, “Scalability of Hybrid SpMV with Hypergraph
Partitioning and Vertex Delegation for Communication Avoidance,” International
Conference on High Performance Computing & Simulation (HPCS 2020), Mar. 2021.

[13] B. Priest, T. Steil, G. Sanders, and R. Pearce, “You’ve got mail (ygm): Building
missing asynchronous communication primitives,” in 2019 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW), 2019, pp.
221–230.

[14] J. Yang and J. Leskovec, “Defining and evaluating network communities based
on ground-truth. corr abs/1205.6233 (2012),” arXiv preprint arXiv:1205.6233, 2012.

[15] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan, “Group formation in
large social networks: membership, growth, and evolution,” in Proceedings of
the 12th ACM SIGKDD international conference on Knowledge discovery and data
mining, 2006, pp. 44–54.

[16] H. Kwak, C. Lee, H. Park, and S. Moon, “What is twitter, a social network or a
news media?” in Proceedings of the 19th international conference on World wide
web, 2010, pp. 591–600.

[17] R. Meusel, S. Vigna, O. Lehmberg, and C. Bizer, “Graph structure in the web—
revisited: a trick of the heavy tail,” in Proceedings of the 23rd international confer-
ence on World Wide Web, 2014, pp. 427–432.

[18] P. Boldi, M. Rosa, M. Santini, and S. Vigna, “Layered label propagation: A multires-
olution coordinate-free ordering for compressing social networks,” in Proceedings
of the 20th international conference on World Wide Web, 2011, pp. 587–596.

3

	Abstract
	1 Introduction
	2 Approach
	3 Experiments
	4 Conclusion
	References

