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Figure 1: A 1D partitioning (a) of a graph with a hub vertex 𝑣0 stored on processor 𝑝0. A vertex delegation partitioning (b) of the
same graph which shows the adjacency list 𝑎𝑑 𝑗 (𝑣0) delegated amongst all processors. The smaller adjacency list contained in
each processor’s partition represents the portion of 𝑎𝑑 𝑗 (𝑣0) owned by each processor. In (c), the dashed orange arrows are steps
of a path taken in a vertex delegation partitioned graph. The order of the vertices visited is 𝑣8 → 𝑣10 → 𝑣5 → 𝑣0 → 𝑣2 → 𝑣1, the
order of the processors visited is 𝑝2 → 𝑝3 → 𝑝3 → 𝑝1 → 𝑝0 → 𝑝0.

ABSTRACT
K-Path centrality is based on the flow of information in a graph
along simple paths of length at most K. This work addresses the
computational cost of estimating K-path centrality in large-scale
graphs by introducing the random neighbor traversal graph (RaNT-
Graph). The distributed graph data structure employs a combination
of vertex delegation partitioning and rejection sampling, enabling
it to sample massive amounts of random paths on large scale-free
graphs. We evaluate our approach by running experiments which
demonstrate strong scaling on large real-world graphs. The RaNT-
Graph approach achieved a 56,544x speedup over the baseline 1D
partition implementation when estimating K-path centrality on a
graph with 89 million vertices and 1.9 billion edges.
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1 INTRODUCTION
𝜅-Path centrality (KPC) is a centrality metric based on the con-
cept of information flowing through a graph along simple paths of
length at most 𝜅 . A simple path is one which contains no repeating
vertices. KPC assigns each vertex 𝑣 a value based on the sum of the
probabilities a simple path of length at most 𝜅 originating from all
other vertices passes through 𝑣 [1]. Estimating KPC is done by sam-
pling many simple paths of length at most 𝜅 and assigning a vertex
a value based on the number of paths which traverse through it.
Estimating KPC has shown to identify vertices in graphs with high
betweenness centrality [1] and has been utilized in many other
graph problems [2–5]. To estimate KPC on large graphs, many
paths must be sampled which quickly becomes computationally
expensive. In the present work, we introduce the random neighbor
traversal graph (RaNT-Graph), a distributed graph data structure
capable of sampling massive numbers of random paths and walks.

2 APPROACH
The imbalances of storage, compute, and communication are prob-
lems often associated with graph algorithms due to the non-uniform
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Figure 2: Strong scaling of RaNT-Graph, 1D-Rej, and 1D-No-Rej on various real world graphs where 𝑇 paths were sampled
(see Table 1). *Due to large compute time required, 1D-Rej and 1D-No-Rej values were estimated on these graphs. Times were
estimated by timing the sampling of 1M paths and extrapolating this value based on the desired amount of paths to be sampled
𝑇 as shown in Table 1.

topology present in many graphs. RaNT-Graph utilizes vertex dele-
gation partitioning [6] to mitigate these issues. Delegating a ver-
tex distributes the adjacency lists of high-degree vertices or hubs
amongst all processors in a round-robin fashion as shown in Figure
1b. This partitioning technique has been employed in a variety of
graph algorithms and has proven to help scaling capabilities [7–12].

In a 1D partitioning, each vertex is owned by a single processor.
When sampling a large amount of paths, a hub is likely to have
more paths pass through it than a lower degree vertex. Therefore,
in a 1D partitioning, processors which own hubs often must do
more work and communication than other processors. The vertex
delegation partitioning of the graph reduces these imbalances by
distributing the adjacency list of the high degree vertices.

Sampling a simple path involves recursively stepping to unvis-
ited vertices until a termination condition is met. A step involves
either stepping to an undelegated vertex or a delegated vertex.
When stepping to an undelegated vertex 𝑢, the processor which
owns 𝑢 randomly chooses the successive node. When stepping to a
delegated vertex 𝑣 , a random edge 𝑒 connected to 𝑣 must be cho-
sen first, then the processor which owns 𝑒 continues the recursive
process. Since paths are independent of each other, it is obvious
that many paths can be sampled in parallel on a distributed graph.
Figure 1c depicts both types of steps occuring in a single path.

RaNT-Graph also employs rejection sampling to quickly select
the next vertex to traverse to in a simple path. Given the current
vertex in a path 𝑣 , a vertex from 𝑣 ’s neighborhood N(𝑣) must be
chosen that has not previously been visited in the pathS. Construct-
ing the set of unvisited vertices U = N(𝑣) \ S takes 𝑂 ( |N (𝑣) |)
time and can be costly for large degree vertices. Therefore, the next
vertex in a path is determined by selecting a random neighbor of 𝑣
and accepting it if it is not already present in the path. Conversely,
if the selected vertex is already in the path then a new neighbor is
chosen until an unvisited vertex is found.

Lastly, RaNT-Graph utilizes the asynchronous communication
library YGM [13] and is built upon many of the its distributed con-
tainers. YGM’s ability to increase throughput via message buffering
and it’s asynchronous communication make it ideal for algorithms
requiring irregular communication.

3 EXPERIMENTS
All experiments were conducted on LLNL’s Catalyst cluster where
each compute node is equipped with dual Intel Xeon E5-2695v2
processors totaling 24 cores and 128GB of DRAM. The network
uses an Infiniband QDR interconnect. All implementations tested
were written in C++ and utilized YGM.

To examine the strong scaling capability of the RaNT-Graph
approach, we estimate KPC on multiple large scale graphs. Table 1
shows the total vertices 𝑛, total edges𝑚, maximum degree 𝑑𝑚𝑎𝑥 ,
total paths to sample𝑇 , and the maximum path length𝜅 .𝑇 and𝜅 are
derived from equations proposed in the original 𝜅-path paper [1]
where 𝑇 = ⌊2𝜅2𝑛1−2𝛼 ln𝑛⌋ and 𝜅 = ⌊ln(𝑛 +𝑚)⌋ with 𝛼 = 0.2. We
compare our approach with two 1D partitioned implementations,
one which uses rejection sampling (1D-Rej) and one which does not
(1D-No-Rej). As seen in Figure 2, when 𝑑𝑚𝑎𝑥 is large, RaNT-Graph
provides a substantial speedup over the 1D partitioned implemen-
tations.

Table 1: Graphs used in strong scaling experiments.

Graph 𝑛 𝑚 𝑑𝑚𝑎𝑥 𝑇 𝜅

Orkut [14] 3M 117M 33K 74M 18
LiveJournal [15] 4.85M 43M 20K 102M 18
Twitter [16] 42M 1.2B 3M 580M 21
Friendster [14] 66M 1.8B 5.2K 857M 22
web-cc12-hostgraph [17] 89M 1.9B 3M 1B 22
uk-2007-05 [18] 106M 3.3B 975K 1.2B 22

4 CONCLUSION
Estimating 𝜅-path centrality can require sampling large amounts
of paths when applied to large-scale graphs. We introduce RaNT-
Graph, a novel graph data structure optimized for sampling massive
amounts of random simple paths. It combines vertex delegation
partitioning with rejection sampling to reduce compute, storage,
and communication imbalances caused by high-degree vertices.
We demonstrate the strong scalability of RaNT-Graph on multiple
large-scale real-world graphs. When compared to the baseline 1D
partitioned implementations, our approach yields up to a 56, 544×
speedup.
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