Neural Domain Decomposition for Variable Coefficient Poisson Solvers

Sebastian Barschkis*, Zitong Li*, Hengjie Wang, Aparna Chandramowlishwaran

University of California, lrvine

U CI University of
California, Irvine

Motivation

Why speed up the Poisson solving step?

= |t's the bottleneck of many flow simulations. MFiX's [2] fluid solver, for
example, spends more than 80% of its time on solving the Poisson equation.

Why use Neural PDE solvers?

= Predicting PDE solutions is generally faster than solving PDEs numerically.

* Training is compute intensive - but only needs to be done once. Trained models

can predict solutions subject to any input boundary condition (BC).
Why choose a U-Net?

= Convolutions are very efficient for large input domains. A fully-connected
model would need very wide layers to map the right hand side (RHS) and the
variable coefficient to the solution.

= Can capture the correlation of adjacent cells (similar to finite differences (FD)).

Variable Coefficient Poisson Equation

Training

We consider the variable coefficient 2D Poisson equation:
V- (aVp(x)) = f(z), x €

p(x) =g(x), ©ecd b

For our numerical ground truth data, we solve the equation by discretizing it
with FD and solving the corresponding linear system

A(a)p = b(a, f)
with PCG. For a constant coefficient, the system becomes
Ap =0

where A only depends on size of the domain.

Superposition Principle

= Loss: Supervised data and analytical PDE components:

»CTota,l — LData + o - LPDE
= Error metric: Mean-squared-error for both Lpa, and Lppk.
= PDE residual: £ppr minimizes the residual

(@ir1j + aij)(Pis1y — Piy) — (@ij + aim1j) (i — Di-1,5)
(@i g1 + i) (Pijer — i) — (aig + aij—1)(pij — pij—1) — 2fi k] =0
resulting from discretization of Eqg. 1 with FD on a uniform grid with height .

= Model inputs: n 32x32 randomly/uniformly generated grids for BC g, variable
coefficient a, and RHS f.

= Labels: Solution p pre-computed with PCG solver.
= Training: 20k samples/epoch, 20/10 train/valid split, (mini) batchsize 64.

f

1.0 30 1.0
1.4

0.5 5 0.5
1.2 20

0.0 0 0.0
1.0 10 10 -

—-0.5 i —-0.5
0.8 =3

~1.0 0 0 ~1.0

0 20 0 20 0 20

Figure 2. Example of one training sample: Inputs g, a, f, and label p (inhomogeneous Poisson)

Accuracy

Laplace’s equation:
V' (x) =0, x € ()
pl(x) =g(x), @€

Poisson’s equation (zero BC):

Vip(x) = f(=), x €
pP(x) =0, x € 0f)

-—_

Poisson’s equation (non-zero BC):
p(z) =p’(x) +p'(x), =€

Neural PDE solver

= The sum of predictions p? + p' yields a lower error than directly predicting p

P phat Stats

1.0 30 0.10

0.08

0.5 MAPE: 26.2203 %

20 1 0.06

0.04

10 A 10 A MAE: 0.0185

—0.5 0.02

0 -1.0 0
0 20 0 20

0.00

(a) Sum of predictions from Poisson zero BC (57) and Laplace (') models

P phat abs(p-phat) Stats
1.0 30 1.0 30 o = 0.10

0.08

0.5 MAPE: 38.8886 %
20 0.06

0.0 RMSE: 0.0451

10 #58, 0.04 MAE: 0.0383

0.02

10 1 10

-0.5 —0.5

0 -1.0 0 -1.0 0
0 20 0 20 0 20

0.00

(b) Prediction from Poisson non-zero BC (p)

Figure 3. Comparison of ground truth p, predictions p and errors.

Performance of AMG vs Neural PDE solver

Domain Decomposition Method (DDM)

= Subdomain data: Generated from synthetic samples of spatial size 2x2 (64x64
resolution). These are divided into 4 1x1 subdomains.

= Step 1: Solve Poisson’s eq. with zero BC (p?) on each subdomain:

5 PP
Io.s
-0.0

Figure 5. 2x2 subdomains for

o 02 Poisson’s equation with zero BC.
. “10
-
0 .
0 1 2
= Step 2: Solve the Schur system to find the BC for Laplace (MSE ~6ée-3):
5 bc true bc
[1.5
1'0 Figure 6. BC for Laplace.
L 0 Left: Ground truth. Right:
00 Computed solution.
-0.5
OO—LZ O_!—Zl_l.o
= Step 3: Solve Laplace’s eq. (p!) on each subdomain using the BC from step 2:
, pl true pl
[1-0 Figure /. 2x2 subdomains
0.5 for Laplace’s equation. Left:
H o Ground truth. Right:
. s Computed solution.
%0 1 2 o

0 1 2

= Step 4: Find the final solution p = p' + p? (MAE ~3e-2):

sol true sol

I - .
1 2

#0.20

-0.15

-0.10

i0.0S

Figure 8. Final Poisson solution. Left: Ground truth. Center: Computed solution. Right: Error.

0

0 0

Schur Complement

= Architecture: U-Net [3] with skip connections.

= Optimizations: Batch-normalization layers after each convolution, 'LeakyRelu’
activations in contracting and expanding paths.

y

A /]
InputLayer . Conv2D . BatchNormalization ' LeakyRelLU ' MaxPooling2D = Conv2DTranspose ' Concatenate

Figure 1. Modified U-Net architecture for fast Poisson solver

* Equal contributions sbarschk, zitongls@uci.edu

= Solving many samples (n > 150): Neural Operator yields better performance
than numerical solver (AMGX [1]).

. 4
0.30 - —®- PyAMGX Poisson (Inhomogeneous) ,/" 30 ~®- PYAMGX Poisson (Inhomogeneous) *,,’
' —~®- psnNet Poisson (Inhomogeneous) P 4 —&- psnNet Poisson (Inhomogeneous) Jtae
9 0.25 1 Pt v 257 _--®
S % o /”‘
S -~ V'S O 2.0 1 P
) 0.20 A *’ "'—__ SJ’ -
(] P - -
- - ” [a ’/” "—‘
E 0.15 4 ”,‘, ’—‘_____‘——— ’ a 1.5 ,‘,¢ _‘__——”
g /’*’/”‘” g 1.0 - /” ‘——"_—_
F010{ 4T 5t T e
0.05 - LA 2o 05 - /,::—___‘_,——0
. " ‘———

50 150 250 350 450 500 1500 2500 3500 4500
Number of samples Number of samples

(a) Solving a few samples (up to 500) (b) Solving many samples (up to 5,000)

Figure 4. Time to solve (pyamgx.solve()) and predict (tf.predict()) n (32x32) inhomogeneous
Poisson instances using one V100 GPU. Excluding GPU data upload / download times.

SC 2023

Pold P1

Do pr) “Pg: ngo —‘Pg

D1 Zpi “Pﬁg: 6?91 “P]f
_ bo + D1

I >

Figure 9. The BC is on the cell interface rather than cell center. The equation shown above is for a
point on the subdomain interface.

References

Algebraic Multigrid Solver (AmgX) Library, https://github.com/NVIDIA/AMGX, (2023-08-01).

[m] A0 [m]

MFIX-Exa, https://amrex-codes.github.io/MFIX-Exa/, (2023-08-01).

@ NP

Olaf Ronneberger, Philipp Fischer, and Thomas Brox.

U-net: Convolutional networks for biomedical image segmentation.

In Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015: 18th
International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part Il 18, 2015.

4] Hengjie Wang, Robert Planas, Aparna Chandramowlishwaran, and Ramin Bostanabad.
Mosaic flows: A transferable deep learning framework for solving pdes on unseen domains.
Computer Methods in Applied Mechanics and Engineering, 389:114424, 2022.

Code: https.//github.com/HPCForge/poisson-ddm

https://github.com/NVIDIA/AMGX
https://amrex-codes.github.io/MFIX-Exa/
mailto:youremail@cs.toronto.edu
https://github.com/HPCForge/poisson-ddm

