Neural Domain Decomposition for Variable Coefficient Poisson Solvers

Sebastian Barschkis*, Zitong Li*, Hengjie Wang, Aparna Chandramowlishwaran

University of California, lrvine

U CI University of
California, Irvine

Motivation

Why speed up the Poisson solving step?

= |t's the bottleneck of many flow simulations. MFiX's [2] fluid solver, for
example, spends more than 80% of its time on solving the Poisson equation.

Why use Neural PDE solvers?

= Predicting PDE solutions is generally faster than solving PDEs numerically.

* Training is compute intensive - but only needs to be done once. Trained models

can predict solutions subject to any input boundary condition (BC).
Why choose a U-Net?

= Convolutions are very efficient for large input domains. A fully-connected
model would need very wide layers to map the right hand side (RHS) and the
variable coefficient to the solution.

= Can capture the correlation of adjacent cells (similar to finite differences (FD)).

Variable Coefficient Poisson Equation

Training

We consider the variable coefficient 2D Poisson equation:
V- (aVp(x)) = f(z), x €

p(x) =g(x), ©ecd b

For our numerical ground truth data, we solve the equation by discretizing it
with FD and solving the corresponding linear system

A(a)p = b(a, f)
with PCG. For a constant coefficient, the system becomes
Ap =0

where A only depends on size of the domain.

Superposition Principle

= Loss: Supervised data and analytical PDE components:

»CTota,l — LData + o - LPDE
= Error metric: Mean-squared-error for both Lpa, and Lppk.
= PDE residual: £ppr minimizes the residual

(@ir1j + aij)(Pis1y — Piy) — (@ij + aim1j) (i — Di-1,5)
(@i g1 + i) (Pijer — i) — (aig + aij—1)(pij — pij—1) — 2fi k] =0
resulting from discretization of Eqg. 1 with FD on a uniform grid with height .

= Model inputs: n 32x32 randomly/uniformly generated grids for BC g, variable
coefficient a, and RHS f.

= Labels: Solution p pre-computed with PCG solver.
= Training: 20k samples/epoch, 20/10 train/valid split, (mini) batchsize 64.
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Figure 2. Example of one training sample: Inputs g, a, f, and label p (inhomogeneous Poisson)

Accuracy

Laplace’s equation:
V' (x) =0, x € ()
pl(x) =g(x), @€

Poisson’s equation (zero BC):

Vip(x) = f(=), x €
pP(x) =0, x € 0f)

-—_

Poisson’s equation (non-zero BC):
p(z) =p’(x) +p'(x), =€

Neural PDE solver

= The sum of predictions p? + p' yields a lower error than directly predicting p
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(a) Sum of predictions from Poisson zero BC (57) and Laplace (') models
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(b) Prediction from Poisson non-zero BC (p)

Figure 3. Comparison of ground truth p, predictions p and errors.

Performance of AMG vs Neural PDE solver

Domain Decomposition Method (DDM)

= Subdomain data: Generated from synthetic samples of spatial size 2x2 (64x64
resolution). These are divided into 4 1x1 subdomains.

= Step 1: Solve Poisson’s eq. with zero BC (p?) on each subdomain:
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Figure 5. 2x2 subdomains for

o 02 Poisson’s equation with zero BC.
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= Step 2: Solve the Schur system to find the BC for Laplace (MSE ~6ée-3):
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= Step 3: Solve Laplace’s eq. (p!) on each subdomain using the BC from step 2:
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[1-0 Figure /. 2x2 subdomains
0.5 for Laplace’s equation. Left:
H o Ground truth. Right:
. s Computed solution.
%0 1 2 o

0 1 2

= Step 4: Find the final solution p = p' + p? (MAE ~3e-2):

sol true sol
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Figure 8. Final Poisson solution. Left: Ground truth. Center: Computed solution. Right: Error.
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Schur Complement

= Architecture: U-Net [3] with skip connections.

= Optimizations: Batch-normalization layers after each convolution, 'LeakyRelu’
activations in contracting and expanding paths.
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Figure 1. Modified U-Net architecture for fast Poisson solver
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= Solving many samples (n > 150): Neural Operator yields better performance
than numerical solver (AMGX [1]).
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Figure 4. Time to solve (pyamgx.solve()) and predict (tf.predict()) n (32x32) inhomogeneous
Poisson instances using one V100 GPU. Excluding GPU data upload / download times.
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Figure 9. The BC is on the cell interface rather than cell center. The equation shown above is for a
point on the subdomain interface.
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Code: https.//github.com/HPCForge/poisson-ddm
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