
Neural Domain Decomposition forVariable Coefficient Poisson Solvers
Sebastian Barschkis∗, Zitong Li∗, HengjieWang, Aparna Chandramowlishwaran

University of California, Irvine

Motivation

Why speed up the Poisson solving step?

It’s the bottleneck of many flow simulations. MFiX’s [2] fluid solver, for

example, spends more than 80% of its time on solving the Poisson equation.

Why use Neural PDE solvers?

Predicting PDE solutions is generally faster than solving PDEs numerically.

Training is compute intensive - but only needs to be done once. Trained models

can predict solutions subject to any input boundary condition (BC).

Why choose a U-Net?

Convolutions are very efficient for large input domains. A fully-connected

model would need very wide layers to map the right hand side (RHS) and the

variable coefficient to the solution.

Can capture the correlation of adjacent cells (similar to finite differences (FD)).

Variable Coefficient Poisson Equation

We consider the variable coefficient 2D Poisson equation:

∇ · (a∇p(x)) = f (x), x ∈ Ω
p(x) = g(x), x ∈ ∂Ω (1)

For our numerical ground truth data, we solve the equation by discretizing it

with FD and solving the corresponding linear system

A(a)p = b(a, f )
with PCG. For a constant coefficient, the system becomes

Ap = b

where A only depends on size of the domain.

Superposition Principle

Poisson’s equation (zero BC):

∇2pp(x) = f (x), x ∈ Ω
pp(x) = 0, x ∈ ∂Ω

Laplace’s equation:

∇2pl(x) = 0, x ∈ Ω
pl(x) = g(x), x ∈ ∂Ω︸ ︷︷ ︸

Poisson’s equation (non-zero BC):

p(x) = pp(x) + pl(x), x ∈ Ω

Neural PDE solver

Architecture: U-Net [3] with skip connections.

Optimizations: Batch-normalization layers after each convolution, ’LeakyRelu’

activations in contracting and expanding paths.

Figure 1. Modified U-Net architecture for fast Poisson solver

Training

Loss: Supervised data and analytical PDE components:

LTotal = LData + α · LPDE

Error metric: Mean-squared-error for both LData and LPDE.

PDE residual: LPDE minimizes the residual

[(ai+1,j + ai,j)(pi+1,j − pi,j) − (ai,j + ai−1,j)(pi,j − pi−1,j)
+(ai,j+1 + ai,j)(pi,j+1 − pi,j) − (ai,j + ai,j−1)(pi,j − pi,j−1) − 2fi,jh

2]2 = 0
resulting from discretization of Eq. 1 with FD on a uniform grid with height h.

Model inputs: n 32x32 randomly/uniformly generated grids for BC g, variable
coefficient a, and RHS f .

Labels: Solution p pre-computed with PCG solver.

Training: 20k samples/epoch, 90/10 train/valid split, (mini) batchsize 64.

Figure 2. Example of one training sample: Inputs g, a, f , and label p (inhomogeneous Poisson)

Accuracy

The sum of predictions p̂p + p̂l yields a lower error than directly predicting p̂

(a) Sum of predictions from Poisson zero BC (p̂p) and Laplace (p̂l) models

(b) Prediction from Poisson non-zero BC (p̂)

Figure 3. Comparison of ground truth p, predictions p̂ and errors.

Performance of AMG vs Neural PDE solver

Solving many samples (n > 150): Neural Operator yields better performance
than numerical solver (AMGX [1]).

(a) Solving a few samples (up to 500) (b) Solving many samples (up to 5,000)

Figure 4. Time to solve (pyamgx.solve()) and predict (tf.predict()) n (32x32) inhomogeneous
Poisson instances using one V100 GPU. Excluding GPU data upload / download times.

Domain Decomposition Method (DDM)

Subdomain data: Generated from synthetic samples of spatial size 2x2 (64x64

resolution). These are divided into 4 1x1 subdomains.

Step 1: Solve Poisson’s eq. with zero BC (pp) on each subdomain:

0 1 2
0

1

2 pp

1.5

1.0

0.5

0.0

0.5

Figure 5. 2x2 subdomains for

Poisson’s equation with zero BC.

Step 2: Solve the Schur system to find the BC for Laplace (MSE ≈6e-3):

0 1 2
0

1

2 bc true

0 1 2

bc

1.0

0.5

0.0

0.5

1.0

1.5

Figure 6. BC for Laplace.

Left: Ground truth. Right:

Computed solution.

Step 3: Solve Laplace’s eq. (pl) on each subdomain using the BC from step 2:

0 1 2
0

1

2 pl true

0 1 2

pl

1.0

0.5

0.0

0.5

1.0

1.5

Figure 7. 2x2 subdomains

for Laplace’s equation. Left:

Ground truth. Right:

Computed solution.

Step 4: Find the final solution p = pl + pp (MAE ≈3e-2):

0 1 2
0

1

2 sol true

0 1 2

sol

1

0

1

0 1 2

diff

0.05

0.10

0.15

0.20

Figure 8. Final Poisson solution. Left: Ground truth. Center: Computed solution. Right: Error.

Schur Complement

p0 = pl
0 + pp

0 = cT
0 g0 + pp

0
p1 = pl

1 + pp
1 = cT

1 g1 + pp
1

g = p0 + p1

2

g p1p0

Figure 9. The BC is on the cell interface rather than cell center. The equation shown above is for a

point on the subdomain interface.

References

[1] Algebraic Multigrid Solver (AmgX) Library, https://github.com/NVIDIA/AMGX, (2023-08-01).

[2] MFIX-Exa, https://amrex-codes.github.io/MFIX-Exa/, (2023-08-01).

[3] Olaf Ronneberger, Philipp Fischer, and Thomas Brox.

U-net: Convolutional networks for biomedical image segmentation.

In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th

International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, 2015.

[4] Hengjie Wang, Robert Planas, Aparna Chandramowlishwaran, and Ramin Bostanabad.

Mosaic flows: A transferable deep learning framework for solving pdes on unseen domains.

Computer Methods in Applied Mechanics and Engineering, 389:114424, 2022.

∗ Equal contributions sbarschk, zitongl5@uci.edu SC 2023 Code: https://github.com/HPCForge/poisson-ddm

https://github.com/NVIDIA/AMGX
https://amrex-codes.github.io/MFIX-Exa/
mailto:youremail@cs.toronto.edu
https://github.com/HPCForge/poisson-ddm

