
Neural Domain Decomposition for Variable Coefficient Poisson
Solvers

Sebastian Barschkis
∗

University of California, Irvine

Irvine, CA, USA

sbarschk@uci.edu

Zitong Li
∗

University of California, Irvine

Irvine, CA, USA

zitongl5@uci.edu

Hengjie Wang

Modular Inc

USA

hengjiew@uci.edu

Aparna Chandramowlishwaran

University of California, Irvine

Irvine, CA, USA

amowli@uci.edu

ABSTRACT
The computational bottleneck in many fluid simulations arises from

solving the variable coefficient Poisson equation. To tackle this chal-

lenge, we propose a novel neural domain decomposition algorithm

to accelerate its solution. Our approach hinges on two key ideas:

first, using neural PDE solvers to approximate the solutions within

subdomains, and second, ensuring continuity across subdomain

boundaries by solving a Schur complement system derived from

the cell-centered discretized Poisson equation. A distinct advan-

tage of our approach lies in generating a large dataset consisting

only of small-scale problems to train the subdomain solver. This

trained model can subsequently be applied to problems with large

and complex geometries. Moreover, by batching the independent

subdomain solves, we achieve high GPU utilization with neural

solvers compared to state-of-the-art numerical methods. In contrast

to neural domain decomposition algorithms that rely on Schwarz

overlapping methods, our optimization-based approach, coupled

with neural PDE solvers, improves accuracy and performance.

KEYWORDS
Poisson equation, variable coefficient, neural PDE solver

1 MOTIVATION
The Poisson equation solving step is the bottleneck of many fluid

flow simulations. MFiX’s [4] fluid solver, for example, spends more

than 80% of its time on solving the Poisson equation. Methods

that speed up this process and that generalize to a wide range

of Poisson equation configurations, i.e. methods that can solve

Poisson equations with varying boundary conditions and variable

coefficients, could improve the efficiency of these numerical flow

simulators.

Predicting solutions of partial differential equations (PDEs) with

NNs is generally faster than solving PDEs numerically. NNs are

therefore considered a promising tool to solve PDEs efficiently.

While their training is usually compute intensive it only needs to

be done once. Trained models can predict solutions subject to many

∗
Both authors contributed equally to this research.

SC23, November 12–17, 2023, Denver, CO, USA
2023. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

input boundary conditions (BC) – not just those that were shown

to the network during training.

Among NNs, convolutional neural networks (CNNs) are particu-

larly suited for solving PDEs since they, similarly to finite differ-

ences (FD), capture the correlation of adjacent cells. In contrast

to fully-connected NNs which would require very wide layers to

map the right hand side (RHS) and the variable coefficient to the

solution, CNNs generalize well to large domains.

2 BACKGROUND
2.1 The Variable Coefficient Poisson Equation
We consider the variable coefficient 2D Poisson equation

∇ · (𝑎∇𝑝 (𝒙)) = 𝑓 (𝒙), 𝒙 ∈ Ω

𝑝 (𝒙) = 𝑔(𝒙), 𝒙 ∈ 𝜕Ω
(1)

with Dirichlet BC. For our numerical ground truth data, we solve

the equation by discretizing it with FD and solving the correspond-

ing linear system

𝐴(𝑎)𝑝 = 𝑏 (𝑎, 𝑓)

with a preconditioned conjugate gradient (PCG) solver. For a con-

stant coefficient, the system becomes𝐴𝑝 = 𝑏 where A only depends

on size of the domain.

2.2 The Superposition Principle
Since the Laplace operator is linear, we can decompose the solution

to our original Poisson equation into the sum of the same Poisson

equation with 0 as BC and a Laplace equation with the BC from

the original problem. Formally we have:

𝑝 (𝒙) = 𝑝𝑝 (𝒙) + 𝑝𝑙 (𝒙), 𝒙 ∈ Ω

where 𝑝𝑙 is the solution to the Laplace equation:

∇2𝑝𝑙 (𝒙) = 0, 𝒙 ∈ Ω

𝑝𝑙 (𝒙) = 𝑔(𝒙), 𝒙 ∈ 𝜕Ω

and 𝑝𝑝 is the solution to the Poisson equation with 0-BC:

∇2𝑝𝑝 (𝒙) = 𝑓 (𝒙), 𝒙 ∈ Ω

𝑝𝑝 (𝒙) = 0, 𝒙 ∈ 𝜕Ω

https://doi.org/XXXXXXX.XXXXXXX

SC23, November 12–17, 2023, Denver, CO, USA Barschkis, et al.

3 NEURAL PDE SOLVER
The neural PDE solver for the inhomogeneous variable coefficient

Poisson equation is based on the observation that its solution can

be derived from the sum of the Poisson equation with zero-BC and

the Laplace equation.

3.1 Architecture
The architecture for all of our Poisson / Laplace equation models is

based on the original U-Net [5] with skip connections. To prevent

overfitting and improve convergence we optimize this architecture

by using batch-normalization layers after each convolution and

’LeakyRelu’ activations in contracting and expanding paths.

4 PRELIMINARY RESULTS
Solving Poisson with a NN has two advantages: (1) Speedup over

numerical solvers when solving many samples, and (2) improved

accuracy when breaking up the inhomogeneous Poisson equation

into separate models for the Laplace and Poisson zero-BC equations.

4.1 Performance
The NN performs better than the numerical solver [3] when solving

lots of samples. While the latter computes solutions iteratively, the

neural PDE solver predicts 𝑛 at once – resulting in a speedup.

(a) 50 to 500 samples (b) 500 to 5,000 samples

Figure 1: Time taken to solve (pyamgx.solve()) and predict
(tf.predict()) n (32x32) inhomogeneous Poisson instances
using one Nvidia V100 GPU (excluding GPU data upload /
download times). With a large n the neural solver becomes
more performant than the numerical method (Fig. 1b).

4.2 Accuracy
When predicting the solution 𝑝 of the inhomogeneous Poisson

equation given previously unseen 𝑔, 𝑎, and 𝑓 , more accurate results

can be achieved when predicting the solution to the Poisson zero-

BC and Laplace equations using separate models and then summing

their predictions (Figure 2). While test inputs 𝑔, 𝑎, and 𝑓 are unseen,

they follow a smooth distribution and have a value range that

matches the training data.

5 DOMAIN DECOMPOSITION METHOD
To solve the large domain in parallel, we leverage the superposition

principle introduced earlier. The Poisson equation with 0-BC can be

solved by the neural network model introduced in previous section.

To solve the Laplace equation, we need the solution to the original

Poisson equation on the interface between subdomains. In our FD

discretization scheme, the unknown elements that we solve for

are on the cell center while the boundary conditions, including the

(a) Sum of predictions from Poisson zero-BC and Laplace models

(b) Predictions from inhomogeneous Poisson equation model

Figure 2: Comparison of ground truth 𝑝, predictions 𝑝 and er-
rors. More accurate results can be achieved when separating
the solution to the inhomogeneous Poisson equation into
the sum of Poissson zero-BC and Laplace equations (a). The
model that has learned to predict the solution to the inhomo-
geneous Poisson equation directly (b) yields a higher MAE.

ones lying in between subdomains, are on the cell interface. For any

point 𝑔 on the interface, we can form the following linear system

of equations:

2𝑔 = 𝑝0 + 𝑝1 (2)

𝑝0 = 𝑝𝑙
0
+ 𝑝

𝑝

0
= 𝒄𝑇

0
𝒈0 + 𝑝

𝑝

0
(3)

𝑝1 = 𝑝𝑙
1
+ 𝑝

𝑝

1
= 𝒄𝑇

1
𝒈1 + 𝑝

𝑝

1
(4)

where 𝑝0 and 𝑝1 are the unknowns at the centers of the cells ad-

jacent to 𝑔. Note here 𝑝𝑙
𝑖
= 𝒄𝑇

𝑖
𝒈𝑖 derives from the fact that in FD,

the solution to the Lapalce equation at any point is the linear com-

bination of the boundary condition of the subdomain. Using this

system of equation require us to know the 𝒄 . Currently we compute

𝑪 through computing the inverse of the discretization matrix of

each subdomain. Having computed 𝒄 , we solve this linear system
through AMG. The resulting boundary conditions can then be used

to solve the Laplace equation on each subdomain. The pseudo-code

of this algorithm is outlined as the following: Taking the inverse

1: function Poisson-DDM(Ā, F̄, 𝒈)
2: P𝑝 = UNet(Ā, F̄)
3: Find C such that C𝑔 = 𝑝𝑙

4: Assemble and solve linear system using C to solve for 𝒑𝒍

on the subdomain interface

5: P𝑙 = UNet(𝒂, 𝒈)
6: P = P𝑙 + P𝑝

7: end function

of the discretization matrix is expensive and numerically unstable,

thus we are currently investigating potential ways to replace this

with a neural network without sacrificing accuracy.

REFERENCES
[1] Ekhi Ajuria Illarramendi, Michael Bauerheim, Neil Ashton, Corentin Lapeyre, and

Bénédicte Cuenot. 2023. Performance Study of Convolutional Neural Network Ar-

chitectures for 3D Incompressible Flow Simulations. In Proceedings of the Platform

Neural Domain Decomposition for Variable Coefficient Poisson Solvers SC23, November 12–17, 2023, Denver, CO, USA

for Advanced Scientific Computing Conference (Davos, Switzerland) (PASC ’23).
Association for Computing Machinery, New York, NY, USA, Article 17, 11 pages.

https://doi.org/10.1145/3592979.3593416

[2] Ismayil Ismayilov, Javid Baydamirli, Doğan Sağbili, Mohamed Wahib, and Didem

Unat. 2023. Multi-GPU Communication Schemes for Iterative Solvers: When CPUs

Are Not in Charge. In Proceedings of the 37th International Conference on Super-
computing (Orlando, FL, USA) (ICS ’23). Association for Computing Machinery,

New York, NY, USA, 192–202. https://doi.org/10.1145/3577193.3593713

[3] Nvidia. 2023. Algebraic Multigrid Solver (AmgX) Library, https://github.com/

NVIDIA/AMGX, (2023-08-01).

[4] U.S. Department of Energy. 2023. MFIX-Exa, https://amrex-codes.github.io/MFIX-

Exa/, (2023-08-01).

[5] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-net: Convolutional

networks for biomedical image segmentation. In Medical Image Computing and
Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Mu-
nich, Germany, October 5-9, 2015, Proceedings, Part III 18. Springer, 234–241.

[6] Hengjie Wang, Robert Planas, Aparna Chandramowlishwaran, and Ramin Bostan-

abad. 2022. Mosaic flows: A transferable deep learning framework for solving

PDEs on unseen domains. Computer Methods in Applied Mechanics and Engineering
389 (2022), 114424.

[7] Ali Girayhan Özbay, Arash Hamzehloo, Sylvain Laizet, Panagiotis Tzirakis, Geor-

gios Rizos, and Björn Schuller. 2021. Poisson CNN: Convolutional neural networks

for the solution of the Poisson equation on a Cartesian mesh. Data-Centric Engi-
neering 2 (2021). https://doi.org/10.1017/dce.2021.7

https://doi.org/10.1145/3592979.3593416
https://doi.org/10.1145/3577193.3593713
https://github.com/NVIDIA/AMGX
https://github.com/NVIDIA/AMGX
https://amrex-codes.github.io/MFIX-Exa/
https://amrex-codes.github.io/MFIX-Exa/
https://doi.org/10.1017/dce.2021.7

	Abstract
	1 Motivation
	2 Background
	2.1 The Variable Coefficient Poisson Equation
	2.2 The Superposition Principle

	3 neural PDE solver
	3.1 Architecture

	4 Preliminary results
	4.1 Performance
	4.2 Accuracy

	5 Domain Decomposition Method
	References

