
[1] S. Corporation, “Sandia-openshmem/sos.” [Online]. Available: https://github.com/Sandia-OpenSHMEM/SOS
[2] M. Si, H. Fu, J. R. Hammond, and P. Balaji, “Openshmem over mpi as a performance contender: Thorough analysis and optimizations,” in OpenSHMEM and Related Technologies. OpenSHMEM in the Era of Exascale and Smart Networks, S. Poole, O. Hernandez, M. Baker, and T. Curtis, Eds. Cham: Springer 
International Publishing, 2022, pp. 39–60.
[3] A. N. Laboratory, “Oshmpi: Openshmem implementation over mpi.” [Online]. Available: https://github.com/pmodels/oshmpi
[4] “Bebop.” [Online]. Available: https://www.lcrc.anl.gov/systems/resources/bebop/
[5] A. N. Laboratory, “Mpich: High-performance portable mpi.” [Online]. Available: https://www.mpich.org/
[6] “Official mpich repository.” [Online]. Available: https://github.com/pmodels/mpich
[7] D. K. Panda, H. Subramoni, C.-H. Chu, and M. Bayatpour, “The mvapich project: Transforming research into high-performance mpi library for hpc community,” Journal of Computational Science, vol. 52, p. 101208, 2021, case Studies in Translational Computer Science. [Online]. Available: 
https://www.sciencedirect.com/science/article/pii/S1877750320305093

Introduction and Motivation

Performance Characterization 

Characterizing One-/Two-sided Designs in
OpenSHMEM Collectives
Yuke Li1, Yanfei Guo2, and Xiaoyi Lu1

1University of California Merced, {yli304, xiaoyi.lu}@ucmerced.edu
2Argonne National Laboratory, yguo@anl.gov

Designs of OpenSHMEM Libraries

References

• The performance of OpenSHMEM varies a 
lot (up to 10X) with several factors

• The comparison exposes the performance 
characteristics of different collective 
communication designs in OpenSHMEM

• We believe the performance 
characterizations can give the community 
some insights for future research avenues

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear Security Administration, and by the U.S. Department of Energy, 
Office of Science, under Contract DE-AC02-06CH11357. We gratefully acknowledge the computing resources provided on Bebop (and/or Swing and/or Blues), a high-performance computing cluster operated by the Laboratory Computing 
Resource Center at Argonne National Laboratory. This work was supported in part by the NSF research grant CCF #2132049.

PADSYS 
Lab

 OpenSHMEM is a widely used PGAS 
programming model in the HPC area

 The team concept and team-based 
collective communication in the latest 
OpenSHMEM Specification v1.5 are 
similar to the communicator and 
collective communication in MPI

 The different design approaches (the 
native one-sided and the MPI-based 
two-sided communication) can lead 
to different performance 
characteristics on HPC clusters (even 
for the same collective routine)

 We characterize two aspects that can 
influence the performance
 Synchronization methods
 Collective algorithms

 We compare the native one-sided 
design and the MPI-based two-sided 
design in collectives using 
benchmarks, and show how big the 
performance difference between them

Partitioned 
Global 

Address 
Space 

(PGAS)

PE

Memory
space

PE PE

Memory
space

Memory
space

Shared
memory

Shared
memory

Shared
memory

Fig. 1: An OpenSHMEM team

Experiment Setup
• Library Selection:
One-sided design 

Sandia OpenSHMEM (SOS) [1]
 Two-sided design 

OpenSHMEM over MPI (OSHMPI) [2][3]

• Platform:
Bebop HPC cluster [4]. Each node has 

36-core Intel Broadwell CPU. The nodes 
are connected with Omni-Path Fabric

• MPI Implementation: MPICH [5][6]

• Benchmark: OSU Micro-Benchmarks [7]

• Sandia OpenSHMEM (SOS)
 Native one-sided design -- a source PE puts data 

into (or gets data from) the shared global memory of 
the target PE

 The synchronization of the one-sided design does 
not require the target PE to actively acknowledge 
data receiving to the source PE

 SOS collectives natively implement some 
algorithms – Tree, Ring, Round-Robin algorithms

• OpenSHMEM over MPI (OSHMPI)
 MPI-based two-sided design -- a source PE sends data, 

which matches with a recv called by a target PE
 Less flexible synchronization. It needs send and recv 

coordination between the source and the target PEs
 OSHMPI collectives essentially call MPI collectives. 

Taking MPICH as an example, it provides rich collective 
algorithms – Tree, Ring, Bruck, Recursive Doubling, etc. 
The algorithm can be chosen at runtime by scheduling

PE

Memory
space

Partitioned 
Global 

Address 
Space 

(PGAS)

PE PE

Memory
space

Memory
space

data target

Fig. 2: One-sided communication design -- A PE puts data 
directly to target shared global memory of the other PE

PE

Memory
space

Partitioned 
Global 

Address 
Space 

(PGAS)

PE PE

Memory
space

Memory
space

data target

send re
cv

re
cv

send

Fig. 3: Two-sided communication design -- A send called 
by source PE must match with a recv called by target PE

(a) Broadcast (intra-node) (b) Broadcast (inter-node)

(c) Collect (intra-node) (d) Collect (inter-node)

(g) Reduce (intra-node)

(h) Reduce (inter-node)

(e) Alltoall (intra-node) (f) Alltoall (inter-node)

Fig. 4: The collective communication 
performance comparison with OSHMPI 

and SOS up to 32 nodes.

Conclusion
Key Findings Reason Explanations

OSHMPI (two-sided) is faster than SOS (one-sided) in most cases. The existing two-sided design (e.g., OSHMPI) can inherit the advantages in well-optimized MPI 
engine, while the one-sided design (e.g., SOS) still needs optimized implementations.

SOS shows lower or comparable latency in certain cases:
- Communication with a small number of PEs like 2, for collect, 
intra-node broadcast, alltoall, and reduce collectives.
- The alltoall collective for medium messages in intra-node 
communication and medium-large messages in inter-
node communication with more PEs, like 16 and 32.

With a small number of PEs, basic point-to-point primitive performance and synchronization 
method dominate the performance. SOS’s native one-sided design can achieve better overlapping 
with simpler synchronizations. Besides, SOS also has some specific optimizations on Omni-Path 
Fabric. For the alltoall collective, MPI internal routine needs further optimization or tuning for 
these particular settings.

SOS shows unstable performance in the case of intra-node 
communication with 32 PEs.

SOS uses extra helper threads to progress the internal communication tasks and thus it is 
oversubscribed.

https://www.mpich.org/
https://github.com/pmodels/mpich
Yuke Li
OAC #2321123 and a DOE research grant DE-SC0024207.


	幻灯片编号 1

