
Characterizing One-/Two-sided Designs in OpenSHMEM
Collectives

Yuke Li
University of California, Merced

Merced, California, USA
yli304@ucmerced.edu

Yanfei Guo
Argonne National Laboratory

Lemont, IL, USA
yguo@anl.gov

Xiaoyi Lu
University of California, Merced

Merced, California, USA
xiaoyi.lu@ucmerced.edu

ABSTRACT
OpenSHMEM is a widely used Partitioned Global Address Space
(PGAS) programming model in the HPC community. The latest
OpenSHMEM Specification v1.5 introduced the team concept and
team-based collective communication that are similar to the com-
municator and collective communication in the Message Passing
Interface (MPI) programming model. However, the typical design of
OpenSHMEM collectives relies on one-sided communication such
as Put and Get to move the data, which is different from two-sided
communication in MPI collectives. In this work, we compare Open-
SHMEM collective designs using native one-sided communication
and MPI-based two-sided communication on an HPC cluster. We
characterize two aspects (i.e., synchronization and collective algo-
rithms) that can influence the performance of these two different
designs and use benchmarks to show the performance differences.
Through our evaluation, we find that the MPI-based design is faster
than the one-sided design at most times, while the one-sided design
can perform faster in certain cases.

1 INTRODUCTION
Partitioned Global Address Space (PGAS) [2] is a popular paral-
lel programming model for High Performance Computing (HPC)
applications. OpenSHMEM is a widely used specification of the
PGAS model. It implements PGAS by defining remotely accessi-
ble memory buffers to share information among OpenSHMEM
processes, or Processing Elements (PEs) [1]. The latest OpenSH-
MEM Specification version 1.5 introduces the team concept and
team-based collective communication, which uses teams to group
OpenSHMEM PEs and identify which PEs should participate in the
collective communication.

Typically, the OpenSHMEM collectives are implemented with
one-sided communication. For example, a broadcast operation can
be implemented as the root process performing a series of Puts in
the shared global memory of other processes as shown in Figure 1(a).
In contrast, MPI collectives are implemented using two-sided com-
munication where a source PE calls a send that will be matched
with a recv called by the target PE as shown in Figure 1(b). These
two different design approaches can lead to different performance
characteristics of collectives on HPC clusters (even for the same col-
lective routine) due to their varied communication algorithms and
synchronization costs. Therefore, comparing these two different
designs and understanding their performance characteristics are
essential for further research and development of OpenSHMEM.

In this work, we aim to answer two important questions: (1)
How big it is for the performance difference between these two de-
signs? (2) What are the potential reasons for these performance gaps?
Hence, we first compare OpenSHMEM collective designs using

PE

Memory
space

Partitioned 
Global 
Address 
Space 
(PGAS)

PE

Memory
space

data target

send re
cv

PE

Memory
space

Partitioned 
Global 
Address 
Space 
(PGAS)

PE

Memory
space

data target

(a) One-sided communication (b) Two-sided communication

Figure 1: Two different designs of OpenSHMEM collectives.

native one-sided communication (i.e., the Sandia OpenSHMEM
(SOS) library [4]) and MPI-based two-sided communication (i.e.,
the OSHMPI library [7, 10]) on a modern HPC cluster. The OSHMPI
library is an OpenSHMEM implementation on top of MPI which
allows us to focus on analyzing the performance difference due to
the implementation of collective operations.

2 DESIGNS OF OPENSHMEM LIBRARIES
In the OpenSHMEM design, which is based on one-sided commu-
nication, Put and Get operations are employed. To complete the
data movements and synchronize all Processing Elements (PEs),
SHMEM_WAIT_UNTIL is used subsequently. The synchronization in
one-sided design does not require the target PE to actively acknowl-
edge the data received from source PEs. This flexibility in one-sided
synchronization could allow PEs to overlap the data movement
among different targets more efficiently, especially when the col-
lective communication is not well-balanced. This is significantly
different from the two-sided communication based collective design
because its data movement happens in multiple coordinated stages
of send/recv among all of the processes.

Another important performance aspect is the collective algo-
rithm. Generally, most OpenSHMEM collectives select the algo-
rithms such as tree, ring, or linear (round-robin). OSHMPI collec-
tives essentially call MPI collectives. For example, shmem_alltoall
calls PMPI_Ialltoall internally. Taking MPICH as an example, it
provides rich collective algorithms for ring, Brucks [3], recursive
doubling, etc [11]. The algorithm can be chosen at runtime based
on scheduling factors, like how many PEs are participating and
how large the message size is. Different algorithm selections could
result in different performance results. For example, in a two-sided
communication, OSHMPI alltoall might choose a tree model
that needs multiple stages to complete because of the PEs organiza-
tion in a tree and there are multiple sends and recvs between the



Y. Li, Y. Guo and X. Lu.

(a) Broadcast (inter-node) (b) Collect (inter-node) (d) Alltoall (inter-node)(c) Reduce (inter-node)

Figure 2: The collective communication performance comparison with OSHMPI and SOS up to 32 nodes (inter-node).

Table 1: Summary of key findings for two types of OpenSHMEM designs.

Key Findings Reason Explanations

OSHMPI (two-sided) is faster than SOS (one-sided) in most cases. The existing two-sided design (e.g., OSHMPI) can inherit the advantages in well-optimized 
MPI engine, while the one-sided design (e.g., SOS) still needs optimized implementations.

SOS shows lower or comparable latency in certain cases:
- Communication with a small number of PEs like 2, for collect, 
intra-node broadcast, alltoall, and reduce collectives.
- The alltoall collective for medium messages in intra-node 
communication and medium-large messages in inter-
node communication with more PEs, like 16 and 32.

With a small number of PEs, basic point-to-point primitive performance and synchronization 
method dominate the performance. SOS’s native one-sided design can achieve better 
overlapping with simpler synchronizations. Besides, SOS also has some specific optimizations 
on Omni-Path Fabric. For the alltoall collective, MPI internal routine needs further optimization 
or tuning for these particular settings.

SOS shows unstable performance in the case of intra-node 
communication with 32 PEs.

SOS uses extra helper threads to progress the internal communication tasks and thus it is 
oversubscribed.

stages. However, the one-sided SOS design could simply use the
round-robin algorithm and put the data to each PE’s destination
buffer.

3 PERFORMANCE CHARACTERIZATION
We characterize the performance of OSHMPI and SOS on the Be-
bop [8] HPC cluster with up to 32 nodes. Each node is equippedwith
36-core Intel Broadwell Xeon E5-2695v4 CPUs and 128GB DDR4
DRAM. The nodes are connected with Omni-Path Fabric. We use
MPICH [5, 6] as the MPI engine. We chose OSU Micro-Benchmarks
(OMB) [9] to run the experiments. The OpenSHMEM collective
benchmarks in OMB do not support the team-based collectives in
OpenSHMEM specification v1.5 yet. Hence, we modify the code in
OMB to match the requirements in the new specification.

We run the evaluation for both intra-node communication and
inter-node communication. In addition, we set the corresponding
environment variable to make sure all the traffic goes through the
interconnect instead of local copy through the shared memory. The
collective communication performance characteristics of OSHMPI
and SOS on Bebop are illustrated in Figure 2. Due to the page limit,
we only include the inter-node performance results in this paper as
shown in Figure2. The intra-node performance results are shown
in the poster.

In a nutshell, the most obvious characteristic shown in Figure2
is that OSHMPI (two-sided design) outperforms SOS (one-sided
design) in most cases, while SOS is faster or comparable in certain
cases. One of the biggest performance gaps happens in the case of
intra-node collect with 32PEs, where OSHMPI achieves 1/10 latency

of SOS. In the case of inter-node alltoall with more than 16 PEs, SOS
achieves 1/4 latency of OSHMPI. We summarize our key findings
and the corresponding reason explanations in Table 1.

4 CONCLUSION
In this paper, we find that the performance of state-of-the-art Open-
SHMEM libraries that are designed in two different ways (one-sided
and two-sided) varies a lot (up to 10X) with several important fac-
tors, such as the number of PEs, the size of messages, different
synchronization methods, and different collective algorithms. We
use collective benchmarks to compare the latency of different Open-
SHMEM designs and expose their performance characteristics. We
believe the conducted extensive performance characterizations in
this paper can give the community some insights for future research
avenues on OpenSHMEM designs and optimizations.

ACKNOWLEDGMENTS
This research was supported by the Exascale Computing Project (17-
SC-20-SC), a collaborative effort of the U.S. Department of Energy
Office of Science and the National Nuclear Security Administration,
and by the U.S. Department of Energy, Office of Science, under
Contract DE-AC02-06CH11357. We gratefully acknowledge the
computing resources provided on Bebop, a HPC cluster operated by
the Laboratory Computing Resource Center at Argonne National
Laboratory. This work was supported in part by an NSF research
grant OAC #2321123 and a DOE research grant DE-SC0024207.



Characterizing One-/Two-sided Designs in OpenSHMEM Collectives

REFERENCES
[1] 2020. OpenSHMEM Application Programming Interface, v1. 5 Final. Technical

Report.
[2] George Almasi. 2011. PGAS (Partitioned Global Address Space) Languages.

Springer US, Boston, MA, 1539–1545. https://doi.org/10.1007/978-0-387-09766-
4_210

[3] J. Bruck, Ching-Tien Ho, S. Kipnis, E. Upfal, and D.Weathersby. 1997. Efficient Al-
gorithms for All-To-All Communications in Multiport Message-Passing Systems.
IEEE Transactions on Parallel and Distributed Systems 8, 11 (1997), 1143–1156.
https://doi.org/10.1109/71.642949

[4] Sandia Corporation. 2023. Sandia-OpenSHMEM/SOS. https://github.com/
Sandia-OpenSHMEM/SOS

[8] Argonne National Laboratory. 2023. Bebop. https://www.lcrc.anl.gov/systems/
resources/bebop/

[5] Argonne National Laboratory. 2023. MPICH: High-Performance Portable MPI.
https://www.mpich.org/

[6] Argonne National Laboratory. 2023. Official MPICH Repository. https://github.
com/pmodels/mpich

[7] Argonne National Laboratory. 2023. OSHMPI: OpenSHMEM Implementation
over MPI. https://github.com/pmodels/oshmpi

[9] Dhabaleswar Kumar Panda, Hari Subramoni, Ching-Hsiang Chu, and Moham-
madreza Bayatpour. 2021. The MVAPICH project: Transforming research into
high-performance MPI library for HPC community. Journal of Computational
Science 52 (2021), 101208. https://doi.org/10.1016/j.jocs.2020.101208 Case Studies
in Translational Computer Science.

[10] Min Si, Huansong Fu, Jeff R. Hammond, and Pavan Balaji. 2022. OpenSHMEM
over MPI as a Performance Contender: Thorough Analysis and Optimizations.
In OpenSHMEM and Related Technologies. OpenSHMEM in the Era of Exascale
and Smart Networks, Stephen Poole, Oscar Hernandez, Matthew Baker, and Tony
Curtis (Eds.). Springer International Publishing, Cham, 39–60.

[11] Rajeev Thakur, Rolf Rabenseifner, and William Gropp. 2005. Optimization of
Collective Communication Operations in MPICH. Int. J. High Perform. Comput.
Appl. 19, 1 (feb 2005), 49–66. https://doi.org/10.1177/1094342005051521

https://doi.org/10.1007/978-0-387-09766-4_210
https://doi.org/10.1007/978-0-387-09766-4_210
https://doi.org/10.1109/71.642949
https://github.com/Sandia-OpenSHMEM/SOS
https://github.com/Sandia-OpenSHMEM/SOS
https://www.lcrc.anl.gov/systems/resources/bebop/
https://www.lcrc.anl.gov/systems/resources/bebop/
https://www.mpich.org/
https://github.com/pmodels/mpich
https://github.com/pmodels/mpich
https://github.com/pmodels/oshmpi
https://doi.org/10.1016/j.jocs.2020.101208
https://doi.org/10.1177/1094342005051521

	Abstract
	1 Introduction
	2 Designs of OpenSHMEM Libraries
	3 Performance Characterization
	4 Conclusion
	Acknowledgments
	References

