
PNNL is operated by Battelle for the U.S. Department of Energy

9/30/2023

Improving Memory Interfacing in HLS-Generated 
Accelerators with Custom Caches Claudio Barone, Giovanni Gozzi, Michele Fiorito,

Ankur Limaye, Antonino Tumeo, Fabrizio Ferrandi

Claudio Barone

claudio.barone@pnnl.gov

• We proposed a new methodology to reduce the impact of memory latency on the 
performance of custom accelerators

• We integrated customizable caches in a state-of-the-art, open-source, HLS tool

• Caches are flexible and can be adapted to many use cases

• High performance gain with no code restructuring and little user effort

▪ Evaluation shows improvements up to 10x

Architecture and memory operations

Conclusions

Motivations
• Domain Specific Accelerators are becoming more 

popular and are widely used in datacenters and cloud 
computing

• High-Level Synthesis (HLS) tools can help in creating 
custom accelerators

• Commercial HLS tools focus their optimization efforts on 
the computation, leaving memory transfers behind

• Optimizing memory transfers with commercial tools 
requires significant code restructuring

User effort and possible 
customization

• Adding caches to an accelerator requires no changes to 
internal code

• Parametric caches offer great opportunities to the user by 
selecting the most appropriate configuration (sizes, write 
policy, associativity…)

• User can add multiple caches to the same accelerator with 
different configurations

• User controls which caches are shared or private

• Adding caches require low user effort

Contributions

• New methodology to reduce impact of memory latency
for custom accelerators

• Improvements to IObundle (IOb) [1] caches

• Integration in open-source Bambu [2] HLS tool

• Evaluation of the impact of custom caches in terms of 
execution time and resource utilization

References
[1] Mário P. Véstias João V. Roque, João D. Lopes and José T. de Sousa. 2021. IObCache: A High-Performance Configurable 

Open-Source Cache. Algorithms (July 2021). https://doi.org/10.3390/a14080218

[2] Fabrizio Ferrandi, Vito Giovanni Castellana, Serena Curzel, Pietro Fezzardi, Michele Fiorito, Marco Lattuada, Marco Minutoli, 
Christian Pilato, and Antonino Tumeo. 2021. Bambu: an Open-Source Research Framework for the High-Level Synthesis of 
Complex Applications. In Proceedings of the ACM/IEEE Design Automation Conference (DAC’21). 1327–1330. 
https://doi.org/10.1109/DAC18074. 2021.9586110

[3] 2021. AMBA AXI and ACE Protocol Specification. Technical Report. ARM. https: //developer.arm.com/documentation/ihi0022 
[4] Louis-Noël Pouchet and Tomofumi Yuki. 2021. Polybench/C 4.2.1. https://web. cse.ohio-
state.edu/~pouchet.2/software/polybench

https://github.com/ferrandi/PandA-bambu

For additional information, contact:

Cache declarations

• The HLS tool inserts caches inside the standard 
memory controller

• To rest of the accelerator, as well as the rest of the 
system, their insertion is completely transparent

• Fully take advantage of AXI [3] bursts

• Bursting allows reading multiple data with a single 
transaction and helps in hiding memory latency

• Support for outstanding write transactions

• Automatic cache flush at the end of the computation

Resource overhead and speedup

Evaluation
• We evaluate our approach on 5 different kernels form 

the PolyBench [4] suite

• We consider the impact of many cache sizes at 
different memory latencies

• Caches shared among matrices if there is no line 
contention

• Separate cache size exploration depending on access 
pattern

Execution delay in clock cycles - 2mm

Execution delay in clock cycles - Atax

• Experimental results show the potential of our approach to 
HLS caches

• Very positive results at high memory latency

• Possible penalty at low latencies, depending on cache size 
and matrix access pattern

• Similar results for doitgen, mvt, bicg kernels

Schematic of an accelerator with three memory channels

(two with caches, one cacheless)

Resource utilization overhead (for registers, LUTs - R,L) and speed up (as execution delay in clock cycles - C)

with 50 clock cycles of memory latency - 2mm and doitgen

Resource utilization overhead (for registers, LUTs - R,L) and speed up (as execution delay in clock cycles - C) 

with 50 clock cycles of memory latency - atax, bicg, mvt

• Limited impact on resource utilization, at least for small caches

• Great maximum speedup

PNNL-SA-189014

Acknowledgements

Research partially supported by SODA-ULTRA, a project in the Adaptive Tunability for Synthesis and Control via 
Autonomous Learning on Edge (AT SCALE) Laboratory Directed Research and Development (LDRD) Initiative.

48 #pragma HLS_interface a m_axi direct bundle = gmem0

49 #pragma HLS_interface b m_axi direct bundle = gmem1

50 #pragma HLS_interface output m_axi direct bundle = gmem2

51

52 #pragma HLS_cache bundle = gmem0 way_size = 16 line_size = 16

53 #pragma HLS_cache bundle = gmem1 way_size = 16 line_size = 16

54 #pragma HLS_cache bundle = gmem2 way_size = 16 line_size = 16

55 void mmult(int* a, int* b, int* output)

No cache 16 32 64 128 256

L R C L R C L R C L R C L R C L R C

atax 7171 6393 7606 1.05 1.03 4.27 1.11 1.07 4.79 1.11 1.07 5.08 1.11 1.07 5.33 1.11 1.07 5.33

bicg 8094 6855 7332 1.06 1.04 2.97 1.11 1.07 3.32 1.11 1.07 3.94 1.24 1.07 4.09 1.11 1.07 6.37

mvt 4787 5513 1468

0

1.07 1.06 1.48 1.16 1.10 1.90 1.17 1.10 2.27 1.16 1.10 4.10 1.16 1.10 7.36

No cache
16, 

256

32, 

256

64, 

256

128, 

256

256, 

256

256, 

16

256, 

32

256, 

64

256, 

128

L R C L R C L R C L R C L R C L R C L R C L R C L R C L R C
2mm 6671 6629 136161 1.36 1.19 9.1 1.44 1.27 9.75 1.45 1.27 9.75 1.44 1.28 9.75 1.42 1.27 9.75 1.36 1.24 1.01 1.42 1.28 1.31 1.42 1.27 1.61 1.43 1.27 9.75

doitgen 4520 4901 739564 1.36 1.18 9.62 1.49 1.23 10.1 1.45 1.23 10.1 1.46 1.23 10.1 1.44 1.23 10.1 1.32 1.17 1.07 1.46 1.23 1.36 1.45 1.23 1.56 1.45 1.23 10.1


	Slide 1

