Improving Memory Interfacing in HLS-Generated Accelerators
with Custom Caches

Claudio Barone, Ankur Limaye,
Antonino Tumeo
{claudio.barone,ankur.limaye,antonino.tumeo}@pnnl.gov

Pacific Northwest National Laboratory
Richland, WA, USA

1 INTRODUCTION

Accelerators based on reconfigurable devices (e.g., Field Programmable

Gate Arrays, FPGAs) are becoming popular for data analytics in
high performance computing or cloud computing systems. In fact,
they allow instantiating custom accelerators tailored to specific, but
ever evolving, computational patterns. However, designing efficient
accelerators for these devices at the register transfer-level (RTL)
is a difficult task. High Level Synthesis (HLS) tools can bridge this
productivity gap, allowing to generate RTL designs starting from
high-level languages (typically C/C++). The majority of HLS tools
focus on optimizing the computational part of a kernel, often not
considering data movement and memory access. For many appli-
cations, instead, memory operations take a significant part of the
overall execution time and can be the actual bottleneck limiting
accelerator performance. This is especially true for data intensive
applications that require accessing large external, and often remote,
memories. Commercial HLS tools only provide limited solutions to
improve the access patterns to higher-latency memories external to
the generated accelerators (e.g., DRAM). Xilinx, for instance, allows
to reorganize data access operations in a kernel to enable AXI [1]
bursts (i.e., load/store operations of multiple consecutive data fol-
lowing the AXI protocol, used to interface to memory controllers),
but this approach requires the user to restructure the original code
and adding pragma directives. We propose, instead, an approach
based on the automatic generation and integration of accelerator
caches. Similarly to how caches are used in general purpose pro-
cessor and accelerators, our approach allows reducing the latency
with which an HLS-generated accelerator accesses external mem-
ory through spatial and temporal locality. However, HLS-generated
accelerators are highly specific to the original computational ker-
nel, hence it is necessary to provide the flexibility to customize
caches as each accelerator is designed. We show how we integrated
our approach in Bambu [2], a state-of-the-art open-source HLS
tool, and how it requires minimal user effort to be triggered. We
show how our approach allows to easily explore tradeoffs between
performance and resource utilization.

2 CACHES DESIGN

The architecture of our caches is inspired by the IObundle (IOb)
caches [3]. However, we provide significant improvements and the
integration within the HLS flow. Our caches can be customized
in size, ways, and behaviors (e.g., write-through/write-back) as
needed by the application through specific parameters. The cache
module presents an AXI4 master [1] interface towards the external
memory that can be used to read or write data in bursts. Burst
transactions allow optimizing memory access by reducing traffic on

Giovanni Gozzi, Michele Fiorito,
Fabrizio Ferrandi
{giovanni.gozzi,michele.fiorito,fabrizio.ferrandi}@polimi.it
Politecnico di Milano
Milano, Italy

48 #pragma HLS_interface a m_axi direct bundle = gmzmé

49 #pragma HLS_interface b m_axi direct bundle = gmeml

58 #pragma HLS_ interface output m_axi direct bundle = gmem2

51

52 #pragma bundle = = 16 line_: =16
53 #pragma bundle = = 16 line_ = 16
54 f#pragma bundle = = 16 line_si = 16

void mmult(int* =z, int* b, i

Figure 1: Cache declarations

the memory interface and access latency, by transferring an entire
cache line in a single transaction instead of an element at a time.
Bursting also enables more efficient prefetching for applications
that have dense data structures and high locality, such as dense
linear algebra operations. In HLS-generated accelerators, a function
transformed in accelerator can have a single channel to a memory
or multiple separate channels to different memories (for example,
one per argument of the original function, if they are pointers that
do not alias and access separate data structures in memory). Our
approach can generate a separate cache for each of these channels.
This allows to customize each cache for the access patterns of each
channel, and removes cache line contention for different memory
areas accessed in parallel. Adding our caches to an accelerator only
requires annotating the main kernel function with a few simple
directives indicating their use and parameters for each of the desired
AXI memory channel. We extended Bambu to parse the pragmas
and configure the cache modules, before instantiating them as it
synthesizes the accelerator. Figure 1 shows the pragmas that we
pass to the extended version of Bambu. The code of the kernel does
not need modifications. Our design provides several improvements
with respect to the IOb caches. The most notable is a more efficient
implementation of write transactions. Our solution can support
outstanding write requests, i.e., it can initiate a new transaction
before receiving the response to the previous one. This allows to
further reduce channel latency, making our solution more efficient
in case of frequent write transactions. Furthermore, our caches
include a flushing mechanism, so that they can write back dirty
cache lines to the external memory before the accelerator signals
completion of the execution, assuring that they moved all data
to the external memory. Our caches do not provide a coherency
mechanism. As highlighted, the HLS tool user assures, when writing
the HLS annotated code, that separate memory ports operate on
data in different memory regions, hence there is no data sharing.

3 EXPERIMENTAL RESULTS

To evaluate the impact of our caches for HLS-generated accelerators,
we synthesize with our modified version of Bambu 5 kernels from
the PolyBench [4] suite: 2mm, atax, bicg, doitgen, mvt. We simulate
the generated accelerators and compare their execution delay with

Table 1: Resource utilization overhead (for registers, LUTs - R,L) and speed up (as execution delay in clock cycles - C) with 50

clock cycles of memory latency - 2mm and doitgen

256, 256 256, 16 256,32 256, 64 256, 128

c/t R ¢/ L R c|] L R c|] L R c|] L R ¢

| No cache 16, 256 32,256 64,256 128, 256
| 1 ® cl L R c| L R cl L =R c| 1
2mm | 6671 6629 136161 | 1.36 119 91 | 144 127 975 145 127 975 | 1.44 128
doitgen | 4520 4901 739564 | 1.36 1.18 9.62 | 149 123 1005 | 145 123 10.05 | 1.46 1.23

9.75 | 142 127 975
10.05 | 1.44 1.23 10.05

136 124 1.01
132 117 107

142 128 131
146 123 136

142 127 161
145 123 156

143 127 975
145 123 10.05

Table 2: Resource utilization overhead (for registers, LUTs - R,L) and speed up (as execution delay in clock cycles - C) with 50

clock cycles of memory latency - atax, bicg, mvt

‘ No cache 16 32

64 128 256

\LRCLRC\LR

C\L R

C\LRC\LRC

atax | 7171 6393 7606 | 1.05 1.03 4.27 | 1.11 1.07
bicg | 8094 6855 7332 | 1.06 1.04 297 | 1.11 1.07
mvt | 4787 5513 14680 | 1.07 1.06 1.48 | 1.16 1.10

479 | 111 1.07 5.08 | 1.11 1.07 533|111 1.07 533
332 | 1.11 1.07 394 | 1.24
1.90 | 1.17 110 2.27 | 1.16

1.07 4.09 | 1.11 1.07 6.37
1.10 4.10 | 1.16 1.10 7.36

and without caches, swiping cache sizes from 16 to 256 words of 4
bytes each, and varying external memory latency from 5 to 50 clock
cycles. We also compare the resource utilization by synthesizing
the kernels for a Virtex7 FPGA device using Vivado 2020.2. We use
an input of 10 and of 10 by 10 elements for every vector and matrix,
respectively. We write the HLS code to instantiate a different AXI
memory port and cache for each input matrix, unless there is no
cache contention due to how a kernel operates. For instance, in the
2mm kernel, matrix C is only accessed after the computation on
matrix B is over, and the two also have the same access pattern.
Thus, the two inputs can share the same memory port and cache
with no impact on performance, reducing resource utilization. We
do not generate separate channels and caches for inputs/outputs
corresponding to vectors, reusing the ones for accessing data of
matrices. Since we use vectors much smaller than matrices, we
expect only limited cache interference. In Tables 1 and 2 we show
the area overhead (for look-up tables, L, and registers, R) and the
execution delay in clock cycles (C) for each accelerator when ac-
cessing an external memory with a latency of 50 clock cycles. We
express the cache sizes in number of memory words. We only show
absolute values for the baseline (no caches), showing instead over-
head factors (L and R columns) and speedup (C column) for cache
configurations. 2mm and doitgen perform matrix multiplications,
thus access a first input matrix by row and a second by column. For
these kernels, we explore size of the caches for the input matrices
separately, reporting first the size of the cache pertaining to data
accessed by row and then the size of the cache for data accessed
by column. We show the analysis with the entire latency swipe
only for 2mm (Figure 2) and atax (Figure 3). The trends of the other
benchmarks are similar. As expected, using caches provides higher
speedup as the external memory latency increases. The best case
configuration for doitgen reaches a speedup over 10x the baseline
solution with no caches. With low external memory latency, caches
become ineffective, to the point that handling misses and line re-
placements in some cases (e.g., small caches for matrices accessed
by column in Figure 2) leads to a slowdown.

Clock cycles (thousands)
8

Latency

=@=—No cache =@=16, 256 32,256 64,256 ==@=128,256

==@==1256, 256 ==@==256, 16 ==@==256,32 ==@==256,64 ==@==256,128

Figure 2: Execution delay in clock cycles - 2mm

Clock cycles (thousands)
oORr N WA VO N ®

Latency

«=@==No cache ==@=16 32 64 e=@u=128 «=@==256

Figure 3: Execution delay in clock cycles - Atax
4 CONCLUSION

We presented an approach to integrate custom caches in HLS-
generated accelerators that access external memory. Our approach
allows to easily explore the cache trade-offs as users design acceler-
ators within the HLS tool. We performed a trade-off analysis on the
PolyBench benchmark suite, showing performance improvements
over 10X a baseline solution with high external memory latency.

REFERENCES

[1] AMBA AXI and ACE Protocol Specification. Technical report, ARM, 2021.

[2] Fabrizio Ferrandi, Vito Giovanni Castellana, Serena Curzel, Pietro Fezzardi,
Michele Fiorito, Marco Lattuada, Marco Minutoli, Christian Pilato, and Antonino
Tumeo. Bambu: an Open-Source Research Framework for the High-Level Synthe-
sis of Complex Applications. In Proceedings of the ACM/IEEE Design Automation
Conference, DAC’21, pages 1327-1330, December 2021.

[3] Mario P. Véstias Jodo V. Roque, Jodo D. Lopes and José T. de Sousa. Iob-cache: A
high-performance configurable open-source cache. Algorithms, July 2021.

[4] Louis-Noél Pouchet and Tomofumi Yuki. Polybench/c 4.2.1, 2021.

	1 Introduction
	2 Caches Design
	3 Experimental results
	4 Conclusion
	References

