
Scalable Algorithms for Analyzing Large Dynamic Networks
using CANDY

ABSTRACT
As the dynamic network’s topology undergoes temporal alterations,
associated graph properties must be updated to ensure their ac-
curacy. Addressing this requirement efficiently in large dynamic
networks led to the proposal of a generic framework, CANDY (Cy-
berinfrastructure for Accelerating Innovation in Network Dynam-
ics). This paper expounds on the development of algorithms and
subsequent performance improvements facilitated by CANDY.

CCS CONCEPTS
• Computing methodologies→ Parallel algorithms.

KEYWORDS
Large Dynamic Network, Parallel Graph Property update, Scalable
Algorithms

ACM Reference Format:
. 2018. Scalable Algorithms for Analyzing Large Dynamic Networks using
CANDY. In Proceedings of Make sure to enter the correct conference title from
your rights confirmation emai (Conference acronym ’XX). ACM, New York,
NY, USA, 2 pages. https://doi.org/XXXXXXX.XXXXXXX
1 INTRODUCTION
Complex systems comprising interacting entities are frequently
represented as networks, where nodes represent the entities, and
edges represent the interactions among them. Analyzing such net-
works by measuring different graph properties provides insights
into the underlying system. However, in a dynamic network, where
the network topology changes with time, analysis of the system re-
quires continuous update of the graph properties. As the real-world
networks are mostly dynamic and large, analysis of them involves
additional challenges. To analyze and manage large dynamic net-
works, we previously proposed a software platform CANDY (Cyber-
infrastructure for Accelerating Innovation in Network Dynamics).
Here, we present the parallel algorithms developed using CANDY
to deal with large dynamic networks.
1.1 CANDY Framework
Here we introduce CANDY, a framework designed for dynamic
network computations, with the following key objectives:

• Establish a novel hierarchical taxonomy of dynamic network
analysis algorithms

• Incorporate templates for developing new scalable, parallel
algorithms dedicated to dynamic network analysis.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

• Provide a way to generate and store synthetic graphs which
preserve the real dynamic network properties.

CANDY introduces a template for creating parallel algorithms that
efficiently update a graph property 𝑃 in a dynamic network. The
template takes the set of changed edges Δ𝐸, which includes both
deleted and inserted edges, as batch input. By utilizing the graph
property from the previous time instance, the template computes
the updated property without the need for a full recomputation
from scratch. This approach enables significant time and resource
savings when updating graph properties in a dynamic network. The
template follows mainly two steps: step 1: Graph sparsification
and identification of affected vertices by parallel processing of each
changed edge in Δ𝐸; step 2: Property update of affected vertices
and maintaining correctness. Step 2 is an iterative process that uses
parallel threads to operate on different affected vertices.

Figure 1: Overview of CANDY
2 DEVELOPED ALGORITHMS
Various algorithms developed using CANDY are discussed here.

2.1 Single Source Shortest Path (SSSP) update
The single source shortest path update algorithm [2] that computes
the shortest route from a source vertex to all other vertices within a
dynamic network is designed using the CANDY-suggested template.
It efficiently detects any alterations in the shortest distances caused
by changes in the network’s structure and identifies the vertices
affected by these changes. Subsequently, the algorithm iteratively
updates these affected vertices by examining their neighboring
vertices and determining the new shortest distances through them.
2.2 Multi-objective Shortest Path (MOSP)
When dealing with a dynamic network where each edge has multi-
ple weights associated with different objective functions, the task of
updating the shortest path that minimizes multiple objectives can
be seen as a multi-objective shortest path update problem. Let there
be objectives 𝑂1, . . . ,𝑂𝑘 and associated SSSP solution 𝑆1, . . . , 𝑆𝑘
(known as the SSSP tree 𝑆1 associated to 𝑂1). Let all these SSSP
trees be combined to form a single network 𝑆 ′. Then the shortest
path in the combined graph provides a heuristic solution for a single
MOSP. Leveraging this insight, we apply SSSP update algorithm

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Khanda et al.

to update each SSSP tree (associated with different objectives) in
dynamic networks and develop a MOSP update algorithm that can
efficiently update a single MOSP in dynamic networks. Fig. 2 shows
the scalability of shared memory parallel implementation of our
MOSP update algorithm.

0 20 40 60
Threads

10

20

30

40

50

Ex
ec

ut
io

n
Ti

m
es

 in
 s

ec

rgg-n-2-20-s0 E = 500K
Ins %

25
50

75 100

0 20 40 60
Threads

500

600

700

Ex
ec

ut
io

n
Ti

m
es

 in
 s

ec

web-indochina-2004 E = 500K
Ins %

25
50

75 100

Figure 2: MOSP update (Shared-mem): Scalability plot

2.3 Vertex Color Update
We use the template provided by CANDY to develop a vertex color
update algorithm. It first finds the color conflicts and probable color
alteration in a network due to edge insertion and deletion and then
recolors the affected vertices using a parallel heuristic algorithm in
a time- and space-efficient manner [1].

2.4 PageRank update
We developed a shared memory, single/multi GPU implementation
on the CANDY architecture to update Page Rank (PR) on streaming
graphs. The algorithm uses the multistep approach to process the
change edges; mark the affected vertices; and update the vertices
whose PR values change significantly. We also empirically and
mathematically have seen that when updating the PR of affected
vertices whose initial PR values are high rather than updating all
the affected vertices gives a significant boost in performance while
keeping the accuracy intact.

2 4 6 8

550

600

650

700

750

601

521 518 516

645

623
611 610

692

663 661 660

782

743

722
712

Twitter (WWW)

2 4 6 8

650

700

750

800

850

683

652
643

637

765

712

701 700

834

800

788 784

866

812

799 798

Twitter (MPI)

Magnitude of Changes
10K 25K 50K 100K

Ti
m

e
to

 u
pd

at
e

PR

Number of GPUs

Figure 3: Multi GPU PageRank Update
2.5 Strongly Connected Component (SCC)

update
Using CANDY, we developed a distributed algorithm for solving
SCCs on dynamic graphs. We use higher-order graph represen-
tations called meta-graphs that capture existing structural infor-
mation in a reduced-size DAG. The algorithm overlays dynamic
edge updates and uses asynchronous color propagation to detect
further SCCs. By the end of the algorithm, all the vertices in an SCC
would be the same color. Fig 4 shows the distributed scalability and
memory utilization of our algorithm.

Figure 4: Scalability(left) and Memory Utilization(right) of
SCC update algorithm (RMAT 27)
2.6 Dynamic Graph Generation
CANDY aims to enhance dynamic network algorithms by providing
accessible and realistic datasets for testing algorithm performance.
To achieve this, we are developing a generator that learns the tim-
ing and types of interactions observed during the graph’s evolution.
Exploiting the four interaction types defined by EASEE[3], our
generator produces multiple synthetic graph datasets that closely
resemble the original graph in terms of size, order, and timing of in-
teractions. These graph datasets can be used to test the performance
of different parallel dynamic graph algorithms. The workflow of
dynamic graph generation is illustrated in Fig 5.

GeneratorOriginal Graph Synthetic Graphs

Reading Features

Interaction Type
Interaction Times

Training
Generation

Draw synthetic edges
with respect to trained

features

Type N1 N0 RType N2

Original Set of Edges
Interaction Dataset

Figure 5: Dynamic Graph Generator
3 ACKNOWLEDGMENTS
This work was partially supported by the NSF projects SANDY (Award
OAC-1725755) and CANDY (Award # OAC-2104115, 2104076, 2104078).
We extend our gratitude to Jeremy Wendt, Richard Field, Cynthia Philips,
Arvind Prasadan and Sucheta Soundarajan for their guidance on generating
synthetic dynamic graphs.

REFERENCES
[1] Arindam Khanda, Sanjukta Bhowmick, Xin Liang, and Sajal K Das. 2022. Parallel

Vertex Color Update on Large Dynamic Networks. In 2022 IEEE 29th International
Conference on High Performance Computing, Data, and Analytics (HiPC). IEEE,
115–124.

[2] Arindam Khanda, Sriram Srinivasan, Sanjukta Bhowmick, Boyana Norris, and
Sajal K. Das. 2022. A Parallel Algorithm Template for Updating Single-Source
Shortest Paths in Large-Scale Dynamic Networks. IEEE Transactions on Parallel
and Distributed Systems 33, 4 (2022), 929–940. https://doi.org/10.1109/TPDS.2021.
3084096

[3] Jeremy D. Wendt, Richard Field, Cynthia Phillips, Arvind Prasadan, Tegan Wilson,
Sucheta Soundarajan, and Sanjukta Bhowmick. 2023. Partitioning Communica-
tion Streams Into Graph Snapshots. IEEE Transactions on Network Science and
Engineering 10, 2 (2023), 809–826. https://doi.org/10.1109/TNSE.2022.3223614

https://doi.org/10.1109/TPDS.2021.3084096
https://doi.org/10.1109/TPDS.2021.3084096
https://doi.org/10.1109/TNSE.2022.3223614

	Abstract
	1 Introduction
	1.1 CANDY Framework

	2 Developed Algorithms
	2.1 Single Source Shortest Path (SSSP) update
	2.2 Multi-objective Shortest Path (MOSP)
	2.3 Vertex Color Update
	2.4 PageRank update
	2.5 Strongly Connected Component (SCC) update
	2.6 Dynamic Graph Generation

	3 Acknowledgments
	References

