
Whywait!? Hades: An Active, Content-Aware System for Precalculating
DerivedQuantities
JAIMECERNUDA,LUKELOGAN,ANTHONYKOUGKAS,andXIAN-HESUN, Illinois InstituteofTechnology,USA
CCS Concepts: • Information systems→ Record and buffer manage-
ment;Key-value stores; Main memory engines; Query operators; Hierar-
chical storage management.

Additional KeyWords and Phrases: HPC, Data Buffering, query, metadata,
derived quantities, hierarchical storage

ACMReference Format:
Jaime Cernuda, Luke Logan, Anthony Kougkas, and Xian-he Sun. 2018. Why
wait!? Hades: An Active, Content-Aware System for Precalculating Derived
Quantities. In Woodstock ’18: ACM Symposium on Neural Gaze Detection,
June 03–05, 2018, Woodstock, NY.ACM, New York, NY, USA, 3 pages. https:
//doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Modern scientific applications generate vast amounts of data [1]. This
data is typically stored using monolithic files on a parallel file system
(PFS) [5]. During analysis, applications must process the entire file
to derive information, which is highly inefficient due to I/O stalls [4].
To reduce stall times, derived quantities can be pre-computed while
the data is produced and then queried in the analysis phase. This
approach, however, requires additional capacity and intelligent use
of storage hierarchies in order to efficiently store and retrieve derived
data.

In this work, we present Hades, an I/O engine that integrates with
the Adios2 framework [3]. Hades presents three core benefits to
Adios: First, it enhances Adios with a hierarchical buffering of the
data generated by scientific applications, allowing for smart data
placement and prefetching of data across the entire spectrum of I/O
devices available; Second, it is capable of calculating simple derived
quantities required by I/O applications, such as the global and lo-
cal min/max values of a given variable; Third, it presents a smart
memory-fist metadata management for querying derived quantities
to enhance system performance.

2 ARCHITECTURE
Wehave developedHades under the Adios2 framework. Adios works
under a put/get I/O interface that Hades needs to adapt to. On put
calls, Hades receives the set of data to be stored along with some
metadata. Hades initializes two paths. The first is an I/O path that
places the data into the hierarchy as individual entities called Blobs.
The second is anasynchronouspath that operates on thedata through
user-defined operators to calculate derived quantities. On get calls,
Hades receives only the metadata. Hades makes a distinction be-
tween two operations: Data calls, asking for the retrieval of data on
the system used to support raw extraction of data and Query calls

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Woodstock ’18:
ACM Symposium on Neural Gaze Detection, June 03–05, 2018, Woodstock, NY , https:
//doi.org/XXXXXXX.XXXXXXX.

I/O Library
(Posix, Adios, etc)

Simulation Analysis

Put GetEndStep BeginStep

Hierarchical Manager

Demote 
Engine

Prefetching
Engine

Interception

I/O engine

Metadata 
Extraction

Aquire 
Operator

Threaded
Execution

Blob Grading
Data 

Aggreagation

Interception

I/O engine

Metadata 
Extraction

Aquire 
Operator

Threaded
Execution

Blob Grading
Data 

Aggreagation

Metadata
Gather

Movement
Engine

Query

I/O engine

Data 
Aggreagation

Data 
Extraction

Fig. 1. Hades Architecture

which operate on the derived quantities. These two operations must
be treated differently to balance the aforementioned tradeoffbetween
performance and storage use.

Finally, Hades leverages a Hierarchical Manager that leverages the
natural step-wise approach of scientific applications to move data
through the hierarchy, demoting Blobs to lower layers after being
used and promoting Blobs when they are going to be necessary for
the next steps of the analysis.

3 HIERARCHICALMANAGEMENT
To manage the storage hierarchy, Hades leverages two core ideas:
First every Blob, a segment of data produced by a process, is assigned
a dataweight. The dataweight takes into account, the blob size, usage
frequency, and thenumberofderivedquantities attached to it; Second,
throughAdios, Hades leverages the natural step-wise design of scien-
tific applications leveraging the beginStep and endStep calls of Adios.
With these two properties, Hades manages two operations: First,

prefetching,which aims to anticipate the data required by the applica-
tion and promote it to higher layers of the hierarchy before the appli-
cations request it. Hades has a parameter, look ahead steps that defines
how far ahead the prefetcher looks. On a beginStep call, Hades will
start prefetching the Blobs for the next n steps. Blobs with lower data
weight arepromotedmore readily. This technique reduces data access
latency and ensures data availability for processing, thereby improv-
ing analysis performance; Second, data placement Hades comprises
an engine that is responsible for optimal data placement within the
hierarchy. Initially, Hades places every data blob in memory. Hades
leverage the call to endStep in the simulation to demote blobs. Blobs
with high data weight are demoted earlier. It uses data placement

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


Conference acronym ’XX, June 03–05, 2018, Woodstock, NY J. Cernuda, L. Logan, A. Kougkas and X-H. Sun

policies, which aim to maximize application bandwidth and alleviate
storagepressureonprecious storage resources likememoryorNVMe.

4 DERIVEDQUANTITIES ANDQUERIES
Hades supports calculating on-the-fly derived quantities and the
ability to answer simple user queries. We plan to expand on both of
these fronts in the future.
Hades currently incorporates two queries: first, the InquireVari-

able function which is used to obtain information about a specific
variable. This method permits collecting important details about a
variable without loading all its content into the memory file; second,
theMinMax function is responsible for computing the minimum and
maximum values of a variable. To calculate it, Hades leverages its
derived quantity pathway, where an asynchronous thread calculates
the local MinMax on the variable. Once done, it leverages the MPI
communicator of Adios to exchange information to process 0, which
will formalize the results and place them into a bucket with the result
tagging the data based on the variable and step.

5 THE I/OMODEL ANDMETADATAMANAGEMENT

Aggregated I/O Mode

1 2 n

...

1 2 n

...

Dispersed I/O Mode

1 2 n

...

1 2 n

...

1 2 n

...

1 2 n

...

1 2 n

...

Metadata 
Storage

...

Fig. 2. I/OModel

Hades has twometh-
ods of storing vari-
ables in the hierar-
chy: aggregated I/O
and dispersed I/O.
Aggregated I/O will
store variables as a
single Blob. This has
a lowmetadata cost
and makes variable
retrieval simpler. However, this imposes a synchronization step on
the write I/O path, which reduces scalability. Dispersed I/O stores
variables using a blob-per-process. This improves the scalability of
I/O on the write I/O path, but at the expense of increased metadata
usage and an aggregation step to read the variable.

Whenwriting a variable, Hadeswill use dispersed I/O tomaximize
write performance for the raw data. For the derived quantities, Hades
uses aggregated I/O since the operations happen on an asynchro-
nous thread detached from the I/O path, optimizing the future query
operations without affecting the main I/O path.

6 PRELIMINARY RESULT
All experiments were conducted on our local cluster, which is de-
signed to support hierarchical storage research. The cluster consists
of a compute rack with 32 nodes. The nodes are interconnected by
two isolated Ethernet networks (one of 40Gb/s and the other 10Gb/s),
with RoCE enabled. Each compute node has a dual Intel(R) Xeon
Scalable Silver 4114, 48 GB RAM, and an NVMe PCIe x8 drive.

6.1 Correctness
We run the Gray-Scott [2] Adios application, which consists of a
simulation and an analysis step. Combined theymake use of both I/O
operations (put/get) and queries. We checked for any difference be-
tween the output of the BP5 engine ofAdios andHades, both in single
and multi-node deployments. We note that Hades provides identical

Fig. 3. Simulation Time

Fig. 4. Analysis Time

results except when dealing with floating point numbers, and specif-
ically doubles, on query results. This is caused by a difference in the
serializationmechanism.Hades cereal-based [6] serialization ismore
performant, as such Hades allows the user to decide between the two
at compilation time, a tradeoff between performance and absolute
correctness. Note that the difference in floating point number is on
average 3∗10−8.

6.2 Motivational results
Wehave executed theGray-Scott simulationon topofAdios using the
BP5 engine. We have both the simulation and analysis components
of the application storing the data both in a node-local burst buffer
on NVMe and on a remote PFS on HDD.

We can see the benefits that NVMe provides over HDD, especially
under a high number of processes. Similarly, the significant overhead
that queries impose on the Adios BP5 engine when calling a high
number of processes. These results motivate an engine like Hades
that can leverage the hierarchy and optimize queries and metadata
to achieve better performance on the analysis step.

ACKNOWLEDGMENTS
This work is partially funded by NSF CSSI-2104013 and NSF OCI-
1835764.

2



Whywait!? Hades: An Active, Content-Aware System for Precalculating DerivedQuantities Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

REFERENCES
[1] JaimeCernuda,HariharanDevarajan, Luke Logan, Keith Bateman,Neeraj Rajesh, Jie

Ye, Anthony Kougkas, and Xian-He Sun. 2021. Hflow: A dynamic and elastic multi-
layered i/o forwarder. In 2021 IEEE International Conference on Cluster Computing
(CLUSTER). IEEE, 114–124.

[2] William F Godoy. [n. d.]. ADIOS2-Examples. https://github.com/ornladios/ADIOS2-
Examples

[3] William F. Godoy, Norbert Podhorszki, RuonanWang, Chuck Atkins, Greg Eisen-
hauer, Junmin Gu, Philip Davis, Jong Choi, Kai Germaschewski, Kevin Huck, Axel
Huebl, Mark Kim, James Kress, Tahsin Kurc, Qing Liu, Jeremy Logan, Kshitij Mehta,
George Ostrouchov, Manish Parashar, Franz Poeschel, David Pugmire, Eric Suchyta,
Keichi Takahashi, Nick Thompson, Seiji Tsutsumi, Lipeng Wan, Matthew Wolf,
KeshengWu, and Scott Klasky. 2020. ADIOS 2: The Adaptable Input Output System.

A framework for high-performance data management. SoftwareX 12 (2020), 100561.
https://doi.org/10.1016/j.softx.2020.100561

[4] Anthony Kougkas, Hariharan Devarajan, and Xian-He Sun. 2018. Hermes: A
Heterogeneous-AwareMulti-TieredDistributed I/OBufferingSystem. InProceedings
of the 27th International Symposium on High-Performance Parallel and Distributed
Computing (Tempe, Arizona) (HPDC ’18). Association for ComputingMachinery,
New York, NY, USA, 219–230. https://doi.org/10.1145/3208040.3208059

[5] Luke Logan, Jaime Cernuda Garcia, Jay Lofstead, Xian-He Sun, and Anthony
Kougkas. 2022. LabStor: AModular and Extensible Platform for Developing High-
Performance, Customized I/O Stacks in Userspace. In 2022 SC22: International Con-
ference for High Performance Computing, Networking, Storage andAnalysis (SC). IEEE
Computer Society, 309–323.

[6] Randolph Voorhies. [n. d.]. Cereal. https://github.com/USCiLab/cereal

3

https://github.com/ornladios/ADIOS2-Examples
https://github.com/ornladios/ADIOS2-Examples
https://doi.org/10.1016/j.softx.2020.100561
https://doi.org/10.1145/3208040.3208059
https://github.com/USCiLab/cereal

	1 Introduction
	2 Architecture
	3 Hierarchical Management
	4 Derived quantities and queries
	5 The I/O model and metadata management
	6 Preliminary Result
	6.1 Correctness
	6.2 Motivational results

	Acknowledgments
	References

