
Forward/backward substitutions performed for multiple RHS
in higher precision, with factorized matrix in lower precision
A dense sub-matrix in the nested dissection layer is factorized in a block way for
parallel task execution by a DAG tree.
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Ø TRSM and GEMM in tmBLAS [5] for mixed precision data and operator are used.
Ø Other mathematical operations also follow mixed precision arithmetic defined by 

C++ templated functions in tmBLAS.

A hybrid factorization solver with mixed precision
arithmetic for sparse matrices

R-CCS 5th International SymposiumSC23, Denver, United States, Nov.  2023

Ø LDU-factorization with pivoting strategy provides robust solver for sparse matrices with large condition number. Even when a 
matrix is singular, the kernel of the matrix could be detected numerically by using higher precision arithmetic.

Ø Computational complexity of the factorization solver is high about O(N2.5) for sparse matrix for finite element analysis with lower 
order elements such as P1 or P2. This complexity in order of N cannot be reduced, but by using lower precision arithmetic, 
computational cost and memory usage could be reduced.

Ø Nested-dissection ordering provides multi-frontal factorization and threshold pivoting for each submatrix can extract a set of 
submatrices with moderate condition number.

Ø Generation of the Schur complement matrix against the moderate part needs to be performed in higher precision to keep the 
accuracy of the whole factorization algorithm.

Ø A hybrid factorization algorithm consists of “factorization with threshold pivoting in lower precision”, “generation of the Schur 
complement in higher precision by iterative solver using factorized matrix in lower precision as a preconditioner”, and 
“factorization with full pivoting and kernel detection in higher precision”.

Ø True mixed precision arithmetic is used in forward/backward substitution procedure with factorized matrix in lower precision and
RHS vectors in higher precision for the preconditioner whose input and output are higher precision, where thanks to no 
truncation of floating-point data during substitution, the preconditioner is kept as a linear operator.
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Decomposition into moderate part 𝑨𝟏𝟏and hard part 𝑨𝟐𝟐 by threshold
pivoting with symmetric permutation
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The Schur complement 𝑆"" = 𝐴"" − 𝐴"!𝐴!!%!𝐴!" is generated via solving a linear
system with multiple RHS 𝐴!!𝑋!" = 𝐴!" by block-GCR solver with preconditioner[6].

avoiding downward casting + increasing accuracy + linearity
𝐿!𝑋! = 𝑌! 𝐿!-𝑋! = .𝑌!
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Overview

Factorization procedure with threshold pivoting 

Hybrid factorization algorithm

Condition number 𝜿(𝑨) of stiffness 
matrix 𝐀 in finite element analysis

§ elasticity problem with 
composite material        
(different material property)

§ incompressible Naiver-Stokes 
flow (divergence freeness)

§ semi-conductor problem 
(exponential weight in drift term)

§ level set method for free-
boundary problem (adaptive 
mesh refinement)
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Accuracy of linear solver needs to cover
1/ℎ ) × 𝜅 𝐴 during nonlinear solution

process with 𝑝-th order finite element 
approximation with mesh size ℎ.

Mixed precision arithmetic for substitution solver
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• Nested-dissection ordering is obtained by METIS or 
SCOTCH graph partitioner.

• The lowest level consists of sparse sub-matrices, and 
dense ones in above levels, where BLAS level 3 
operations are dominant.

• Sparse matrix from FEM or FVM usually consists of 
symmetric nonzero pattern, ”structurally symmetric” and 
symmetric pivoting is more efficient than partial pivoting 
because it keeps structural symmetry during factorization.

• However, symmetric pivoting may meet break down for 
indefinite matrix.

• 2x2 pivoting allows stable factorization and will be applied 
to postponed pivots by a strategy with threshold.

• No perturbation is added to diagonal entries, whereas 
PARDISO [2] and SuperLU_DIST[1] add 𝜀 -perturbation 
for stabilization of the factorization procedure.

• Threshold pivoting uses user defined parameter 𝜏(≃ 10%").
• When the jump of diagonal entries becomes bigger as 

⁄𝐴(𝑘, 𝑘) 𝐴(𝑘 + 1, 𝑘 + 1) > ⁄1 𝜏 then entries with index  
larger than 𝑘 are postponed to the last Schur complement.

• The last Schur complement is generated from all 
postponed entries and whose singularity is analyzed by 
kernel detection algorithm[4] . 

• Overall strategy of factorization is similar to MUMPS [3] 
except for the place where entries are postponed.

• This procedure brings us automatic decomposition of the 
matrix into union of moderate and hard parts.
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linear system with multiple RHS 𝑩 = 𝒃𝟏, … , 𝒃𝒎
solution in higher precision :  𝑨 𝒙𝟏, … , 𝒙𝒎 = 𝑩
solution in lower precision : 𝑸 𝑿𝟎 = 𝑩
residual at the initial stage : 𝑸𝑷𝟎 = 𝑹𝟎 = 𝑩 − 𝑨𝑿𝟎
loop j = 0, …. 
𝓜𝒋 = 𝑨𝑸%𝟏𝑷𝒋

𝑻 𝑨𝑸%𝟏𝑷𝒋
𝓐𝒋 = 𝑹𝒋𝑻(𝑨𝑸%𝟏𝑷𝒋)
𝑿𝒋'𝟏= 𝑿𝒋 +𝑸%𝟏 𝑷𝒋𝓜𝒋
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block-GCR uses SpMM with sym. permutation.

ü Solution of 𝑄 𝑋* = 𝐵 in lower precision 
is obtained by forward/backward 
substitutions using 𝐿𝐷𝑈-factorization of 
𝐴!! in lower precision, which is used as 
a preconditioner.

ü Solution of 𝐴!!𝑋!" = 𝐴!"is computed in 
higher precision.

ü The Schur complement is factorized in 
higher precision with kernel detection to 
verify singularity and overall accuracy of 
the factorization is kept  in higher 
precision.

Numerical examples 
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incompressible flow equations with full-Neumann B.C. hole concentration in semiconductor

Slotboom variable    and gradient fields     :
electrostatic potential 𝜑 𝑒+ in coefficient matrix

pdb1HYS from matrix market

figures taken from https://sparse.tamu.edu/Williams/pdb1HYS


