

- a range of hardware platforms with good performance
- are programming models providing portable abstractions

Evaluating Performance Portability of GPU Programming Models

Joshua H. Davis, Pranav Sivaraman, Isaac Minn, Abhinav Bhatele **Department of Computer Science, University of Maryland**

Analysis & Discussion

Performance Portability Metric (Pennycook et al., [3])

Application	OMPT	ACC	Kokkos	RAJA	SYCL	HIP	CUDA
XSBench	0.64	0.45	1.00	N/A	0.61	0.73	0.87
BS-Copy	0.72	0.98	0.99	1.00	0.96	0.99	0.99
BS-Triad	0.85	0.99	1.00	1.00	0.97	1.00	1.00
BS-Dot	0.06	0.83	0.95	0.68	0.92	1.00	1.00

- **OpenACC** the worst
- models

Conclusion and Future Work

- VI00s to Perlmutter AI00s
- implementations

References

 $\Phi(a, p, H) = \{$

if *i* is supported $\forall i \in H$

otherwise

• Performance portability metric from Pennycook et al. is defined as the harmonic mean of performance efficiency

• We define performance efficiency as the implementation performance divided by peak performance achieved on the platform across all implementations

• Kokkos, CUDA, and HIP achieve the best performance portability, OpenMP and

• The much larger and more complex kernel in XSBench and the reduction operation in BabelSteam-dot lead to worse performance portability for most

• Results set expectations for developers looking to select a programming model for a memory-bound application, and for those porting their application from Summit

• Summit and Perlmutter both use NVIDIA GPUs – moving to Frontier (AMD) and Aurora (Intel) will provide even greater challenge

• Continuing to analyze the performance of additional applications and programming models using this methodology, including adding more missing programming model

^[1] John R Tramm, Andrew R Siegel, Tanzima Islam, and Martin Schulz. 2014. XSBench-the development and verification of a performance abstraction for Monte Carlo reactor analysis. PHYSOR. (2014). [2] Tom Deakin, James Price, Matt Martineau, and Simon McIntosh-Smith. 2018. Evaluating Attainable Memory Bandwidth of Parallel Programming Models via BabelStream. Int. J.

Comput. Sci. Eng. 17, 3 (Jan 2018), 247–262. [3] Simon J Pennycook, Jason D Sewall, and Victor W Lee. 2016. A metric for performance portability. In Proceedings of the 7th International Workshop in Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems