
Anshul Maurya, Naveed Mahmud
Department of Electrical Engineering and Computer Science, Florida Institute of Technology

amaurya2022@my.fit.edu, nmahmud@fit.edu

• QASM Processing :
 In our methodology, we start with the QASM description of
the quantum circuit. An efficient QASM parsing method (QASM-to-HLS)
is developed that generates high-level hardware codes for HLS.
• Layering:

o To emulate quantum operation, each layer of the quantum circuit
is considered, and the corresponding matrix operation is
generated.

o To conserve resources, layers with CNOT gates only are
segregated.

Introduction

• FPGAs can be used for efficient emulation of quantum algorithms,
however mapping quantum circuits to FPGA emulation
architectures is challenging

• The proposed automation framework facilitates the mapping of
quantum circuits to FPGA emulation architectures.

• Experimental results include implementation on Xilinx Alveo U-
200 FPGA [7]. Compared to state-of-the-art software simulator[7],
speedup of almost up to ×100.

• Future work includes more implementations and optimizations.

1) Yee Hui Lee, Mohamed Khalil-Hani, Muhammad Nadzir Marsono, et al. An
fpga-based quantum computing emulation framework based on serial-parallel
architecture. International Journal of Reconfigurable Computing, 2016, 2016

2) Yunpyo Hong, Seokhun Jeon, Sihyeong Park, and Byung-Soo Kim. Quantum cir-
cuit simulator based on fpga. In 2022 13th International Conference on Information
and Communication Technology Convergence (ICTC), pages 1909–1911, 2022

3) Andrew W Cross, Lev S Bishop, John A Smolin, and Jay M Gambetta. Open
quantum assembly language. arXiv preprint arXiv:1707.03429, 2017.

4) Philippe Coussy and Adam Morawiec. High-level synthesis, volume 1. Springer,
2010

5) Marc Bataille. Quantum circuits of cnot gates. arXiv preprint arXiv:2009.13247,
2020.

6) https://www.xilinx.com/products/boards-and-kits/alveo/u200.htmloverview
7) IBM Simulators https://quantumcomputing.ibm.com/lab/docs/iql/manage/simulator.

QASM Processing

Complexity AnalysisEx:

• Matrix Generation :

§ QASM-to-HLS processes
the QASM and produces the HLS
application code, consisting of
host (PC) code and kernel
(FPGA) code

§ For fixed number of qubits, only
the host code changes for
different algorithms and gate
parameters. Kernel architecture
remains same.

• QASM-to-HLS can generate 3 design variants
of kernel architecture for quantum emulation

1. Type-1 Design: This design performs a
sequence of matrix-vector multiplications to
determine a final output quantum state. This is
performed by a single kernel that takes a layer
matrix and state vector as inputs and performs
complex matrix-vector computation.

2. Type-2 Design: A parallelized version of Type-1
design which uses concurrent input streams and
reduces the data transfer time. This design is
optimal for emulation of small circuits and
utilizes the FPGA resources more efficiently.

FPGA Architectures

3. Type-3 Design: This design offers the highest
throughput and acceleration; however, it comes at the
cost of increased memory utilization. The approach
involves passing k matrices into the buffer, where each
pair of matrix computation results is stored in dedicated
buffers. These intermediate results are then multiplied
later to produce the resultant matrix comprising all the
passed 𝑚 matrices in a dataflow design. The resultant
matrix is multiplied by the initial statevector.

Background
• QASM

• Quantum assembly languages [3] are machine-independent languages
that traditionally describe quantum computation in the circuit model.

• Open quantum assembly language (Open QASM 2) was proposed as
an imperative programming language for quantum circuits based on
earlier QASM dialects.

• In principle, any quantum computation could be described using Open
QASM 2.

• High-level Synthesis
• High-level synthesis (HLS) [4] automates hardware design by

converting high-level programming languages into optimized
hardware code.

• Let's hardware designers efficiently build and verify hardware,
by allowing them to describe the design at a higher level of
abstraction.

• Motivation
• Existing FPGA-based quantum circuit emulation methods [1][2]

exhibit limited flexibility in emulating a variety of quantum
algorithms
• They have fixed, algorithm-specific hardware architectures.

• Additionally, the computational load of generating transformation
matrices generally fall on the CPU, thereby restricting the extent to
which FPGAs can be leveraged for accelerating quantum algorithms.

• Mapping a quantum algorithm to its corresponding FPGA architecture
for emulation is challenging, particularly for algorithm developers
with limited FPGA design experience.

• Objectives and Approach
• Provide an interface between front-end quantum algorithm design and

backend FPGA-based emulation.

• Develop a methodology for converting quantum circuits represented
in Quantum Assembly Language (QASM) into their
corresponding architectures for emulation on FPGA backends.

• Automatically derive quantum emulation architectures for High-Level
Synthesis (HLS) on FPGAs. Investigate variations of hardware
architectures with trade-offs between area and speed. Derived
architectures support 64-bit FP precision and complex number
arithmetic.

Type-1 Design:

Time Complexity: 𝒕𝒂𝒗𝒈+ 𝒕𝒂𝒗𝒈𝒄 ×𝑫; 	 𝐃, 𝐝𝐞𝐩𝐭𝐡	𝐨𝐟	𝐜𝐢𝐫𝐜𝐮𝐢𝐭
Space Complexity: 𝟐𝒏&𝟓 + 𝟐𝟐𝒏&𝟒	
𝑨𝒗𝒆𝒓𝒂𝒈𝒆	𝑪𝒐𝒎𝒑𝒖𝒕𝒂𝒕𝒊𝒐𝒏	𝒕𝒊𝒎𝒆	(𝒕𝒂𝒗𝒈𝒄) →
𝑶 𝑵𝟐 ; 𝑵, 𝒏𝒖𝒎𝒃𝒆𝒓	𝒐𝒇	𝒆𝒍𝒆𝒎𝒆𝒏𝒕𝒔	𝒊𝒏	𝒎𝒂𝒕𝒓𝒊𝒙
𝒕𝒂𝒗𝒈𝒄 = 	 𝑨𝒗𝒈	𝒕𝒊𝒎𝒆	𝒇𝒐𝒓	𝒅𝒂𝒕𝒂	𝒕𝒓𝒂𝒏𝒔𝒇𝒆𝒓

Type-2 Design:
Time Complexity: 𝒓. 𝒕𝒂𝒗𝒈 +	𝑫. 𝒕𝒂𝒗𝒈𝒄 ; r = 𝑫

𝑲
Space Complexity: 𝟐𝒏(𝟓 +𝑲. 𝟐𝟐𝒏(𝟒
𝑨𝒗𝒆𝒓𝒂𝒈𝒆	𝑪𝒐𝒎𝒑𝒖𝒕𝒂𝒕𝒊𝒐𝒏	𝒕𝒊𝒎𝒆	(𝒕𝒂𝒗𝒈𝒄) →
𝑶 𝑵𝟐 ; 𝑵, 𝒏𝒖𝒎𝒃𝒆𝒓	𝒐𝒇	𝒆𝒍𝒆𝒎𝒆𝒏𝒕𝒔	𝒊𝒏	𝒎𝒂𝒕𝒓𝒊𝒙
𝒕𝒂𝒗𝒈𝒄 = 	 𝑨𝒗𝒈	𝒕𝒊𝒎𝒆	𝒇𝒐𝒓	𝒅𝒂𝒕𝒂	𝒕𝒓𝒂𝒏𝒔𝒇𝒆𝒓

Type-3 Design:
Time Complexity: (𝒕𝒂𝒗𝒈𝒄 .log𝟐𝑲	+ 𝒕𝒂𝒗𝒈)×𝒓 +	𝒕𝒄

!; r = 𝑫
𝑲
;	 K	=2,	

4,	8,	16	−	−	−	−
Space Complexity for max parallelism: 𝑲 𝑲

𝟐
+ 𝟏 . 𝟐𝟐𝒏(𝟒

Matrix-Matrix Multiplication 𝒕𝒊𝒎𝒆	(𝒕𝒂𝒗𝒈𝒄) → 𝑶 𝑵𝟑

𝑴𝒂𝒕𝒓𝒊𝒙 − 𝑽𝒆𝒄𝒕𝒐𝒓	𝑴𝒖𝒍𝒕𝒊𝒑𝒍𝒊𝒄𝒂𝒕𝒊𝒐𝒏	𝒕𝒊𝒎𝒆	(𝒕𝒄!) → 𝑶 𝑵𝟐
𝑵,𝒏𝒖𝒎𝒃𝒆𝒓	𝒐𝒇	𝒆𝒍𝒆𝒎𝒆𝒏𝒕𝒔	𝒊𝒏	𝒎𝒂𝒕𝒓𝒊𝒙
𝒕𝒂𝒗𝒈𝒄 = 	 𝑨𝒗𝒈	𝒕𝒊𝒎𝒆	𝒇𝒐𝒓	𝒅𝒂𝒕𝒂	𝒕𝒓𝒂𝒏𝒔𝒇𝒆𝒓

QASM to
HLS package

Q
A
S
M

FPGA
Application

Code

Matrix-Vector
Multiplication

MLn

Si/p

So/pHost

Kernel

Experimental Results

Number
of Qubits

FPGA Kernel
Execution
Time (ms)

LUT% Register% BRAM% DSP%
Software

Simulation
Time

3 0.012 0.52 0.46 1.06 0.16 7.16

5 0.131 0.51 0.47 1.25 0.16 12

7 1.923 0.52 0.46 3.89 0.16 37.1

Conclusions

o Multiplying the matrices of two adjacent layers can yield
a consolidated single-layer matrix, leveraging this insight
can effectively mitigate data transfer latency and accelerate
the computation of results across multiple layers.

o Controlled gates [5] will be processed differently without
forming the pairs.

o Each layer’s matrix is computed using the developed python
based QASM-to-HLS package.

o The package contains functions for layer identification and
classification from the QASM code.

o Layer matrices are generated by tensor operations between
individual gate matrices.

Matrix-Matrix
Multiplication

MLn

K i/p
MLn+k-1

Host

Matrix-Vector
Multiplication

MTotal

Si/p

So/p

MLn+k

MTotal
to PS

to PS

Kernel

Kernel

Matrix-Vector
Multiplication

MLn

Si/p

So/p

K i/p
MLn+k

Host

Kernel

QASM-to-HLS: A Framework for Accelerating Quantum Circuit Emulation on
High-Performance Reconfigurable Computers

References

mailto:amaurya2022@my.fit.edu
https://www.xilinx.com/products/boards-and-kits/alveo/u200.htmloverview

