
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

QASM-to-HLS: A Framework for AcceleratingQuantum Circuit
Emulation on High-Performance Reconfigurable Computers

Anshul Maurya
amaurya2022@my.fit.edu

Florida Institute of Technology
Melbourne, Florida, USA

Naveed Mahmud
nmahmud@fit.edu

Florida Institute of Technology
Melbourne, Florida, USA

ABSTRACT
High-performance reconfigurable computers (HPRCs) make use of
Field-Programmable Gate Arrays (FPGAs) for efficient emulation
of quantum algorithms. Generally, algorithm-specific architectures
are implemented on the FPGAs and there is very little flexibility.
Moreover, mapping a quantum algorithm onto its equivalent FPGA
emulation architecture is challenging. In this work, we present an
automation framework for converting quantum algorithms/circuits
to their equivalent FPGA emulation architectures. The framework
processes quantum circuits represented in Quantum Assembly Lan-
guage (QASM) and derives high-level descriptions of the hardware
emulation architectures for High-Level Synthesis (HLS) on HPRCs.
Experimental results show that the framework-generated architec-
tures deployed on an HPRC perform faster than a state-of-the-art
software simulator.

KEYWORDS
Quantum Computing, Field-Programmable Gate Arrays

ACM Reference Format:
Anshul Maurya and Naveed Mahmud. 2023. QASM-to-HLS: A Framework
for Accelerating Quantum Circuit Emulation on High-Performance Recon-
figurable Computers. In Proceedings of ACM Conference (SC’23). ACM, New
York, NY, USA, 2 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The simulation of quantum circuits on classical platforms has been
made necessary due to the noisy nature and intermediate scale
of current quantum devices. The use of Field-Programmable Gate
Arrays (FPGAs) to accelerate the simulation of quantum circuits
(also known as FPGA-based emulation) has been investigated for
some time. Existing FPGA-based emulation methods[1][2] exhibit
limited flexibility in emulating a variety of quantum algorithms
due to their fixed algorithm-specific architectures. Additionally, the
computational load of generating matrix representations of quan-
tum circuits generally fall on the CPU, thereby restricting the extent
to which FPGAs can be leveraged for accelerating the emulation
of quantum circuits/algorithms. Mapping a quantum algorithm to
an FPGA hardware architecture for emulation is also challenging,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SC’23, Nov. 2023, Denver, CO, USA
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

particularly for quantum algorithm developers with limited FPGA
design experience. In this work, we propose an automation frame-
work to interface between front-end quantum algorithm design
and backend FPGA-based emulation. We develop a methodology
for converting quantum circuits represented in Quantum Assembly
Language (QASM) [3] into corresponding digital hardware archi-
tectures for emulation on FPGAs. The proposed framework auto-
matically derives high-level descriptions of the hardware emulation
architectures for High-Level Synthesis (HLS) [4] on FPGA backends.

2 PROPOSED FRAMEWORK
We present a framework that automatically derives efficient hard-
ware emulation architectures described in high-level languages for
HLS. HLS is a fast and convenient entry point into the hardware de-
sign process. This work implements an efficient interface between
the QASM representation of quantum circuits and the HLS design
process for facilitating emulation of quantum circuits on FPGA
hardware. The proposed methodology is shown in Fig. 1.

Figure 1: Work flow of proposed framework.

2.1 QASM Parsing
In order to derive the FPGA application code from QASM, we have
developed a software package, hereby named QASM-to-HLS. This
package takes QASM code as input and generates a high-level
language based application code for FPGA, as depicted in Figure
1. The QASM-to-HLS parses the QASM code and produces HLS
application code, consisting of host (PC) code and kernel (FPGA)
code. During QASM parsing, information about gate types and their
positions within the circuit are extracted. Next, gates are organized
into circuit layers, see Figure 2, where the width of each layer
equals the number of qubits. With the exception of non-entangling
gates, each gate’s inclusion within the list of layers is determined
by its sequential position within the circuit. An absence of a gate in
the sequence gets populated with identity gates. Entangling gates
such as controlled NOT[5] are processed as single layers without
forming pairs with other gates. After circuit layer formation, tensor
product of respective gate matrices are performed, resulting in a
combined matrix for each layer.

1

https://orcid.org/1234-5678-9012
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

SC’23, Nov. 2023, Denver, CO, USA Anshul Maurya and Naveed Mahmud

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Figure 2: Circuit Layering

2.2 FPGA Architecture
After parsing the QASM code, QASM-to-HLS generates the corre-
spondingHLS code describing the FPGAhardware architecture. The
derived FPGA architectures support 64-bit floating-point precision
to perform complex number arithmetic. QASM-to-HLS can derive
three types of architectures that explore space-time trade-offs.

2.2.1 TYPE-1 Design. The design involves consecutive multiplica-
tion of the initial quantum state vector 𝑆𝑖/𝑝 with each circuit layer
matrix𝑀𝐿𝑖 , to produce the final output state vector, 𝑆𝑜/𝑝 . This is
performed by a single kernel that takes a layer matrix and state
vector as inputs and performs complex matrix-vector computation,
see Figure 3, where 𝐾 = 1. The expression for total execution time
of this architecture is (𝑡𝑎𝑣𝑔+𝑡𝑐𝑎𝑣𝑔)×𝐿, where 𝑡𝑎𝑣𝑔 is the average time
of data transfer between host and kernel, 𝑡𝑐𝑎𝑣𝑔 is the average com-
putation time of kernel, and 𝐿 is the total number of circuit layers.
The space complexity of the architecture using 64-bit floating-point
precision is 2𝑛+5 + 22𝑛+4, where 𝑛 is the number of qubits.

2.2.2 TYPE-2 Design. The implemented kernel in this design, see
Figure 3, takes 𝐾 matrices as input, reducing the number of data
transfers from host to FPGA. This design is optimal for emulation
of small circuits and utilizes the FPGA resources more efficiently.
The data transfer time and overall application time is also reduced
compared to Type-1 design. For𝐾 parallel matrix inputs, the number
kernel calls will be 𝑟 = 𝐿/𝐾 . The time expression of this design is
𝑟 × 𝑡𝑎𝑣𝑔 + 𝐿 × 𝑡𝑐𝑎𝑣𝑔 and space complexity will be 2𝑛+5 + 𝐾 · 22𝑛+4.

Figure 3: Type-2 Design

2.2.3 TYPE-3 Design. The approach involves passing 𝐾 layer ma-
trices into kernel buffers. This architecture exploits the fact that
each layer is independent in a quantum circuit and can bemultiplied
in concurrence. Matrix-Matrix multiplication results are stored in
intermediate buffers and then multiplied later to produce a final
matrix representing the full quantum circuit. The resultant final
matrix is used in matrix-vector computation to obtain the output
state vector. Figure 4 shows the total architecture design with two
kernels, one for matrix-matrix multiplication with time 𝑡𝑐 , and an-
other for matrix-vector multiplication with time 𝑡𝑐

′
. The total time

and space complexity, 𝑇 and 𝑆 respectively, of this design is given
by (1).

𝑇 =

(
𝑡𝑐𝑎𝑣𝑔 · log2 𝐾 + 𝑡𝑎𝑣𝑔

)
× 𝑟 + 𝑡𝑐

′

𝑆 = 𝐾 ·
(
𝑘

2
+ 1

)
· 22𝑛+4

(1)

Figure 4: Type-3 Design

3 EXPERIMENTAL RESULTS
We present our preliminary results in Table 1 where aQASM-to-HLS
generated Type-1 architecture with 𝐾 = 1 was deployed on a Xilinx
Alveo U-200 accelerator [6] for randomized circuits with constant
depth. Compared to IBM’s software-based statevector simulator[7],
the Type-1 architecture shows up to around ×100 speedup.

Table 1: Experimental offshoots for Type-1 design.

4 CONCLUSION AND FUTUREWORK
FPGAs can be used for efficient emulation of quantum algorithms,
however mapping quantum circuits to FPGA emulation architec-
tures is challenging. The proposed automation framework facil-
itates automatic mapping of quantum circuits to efficient FPGA
emulation architectures. Future work will include implementations
of all architecture types and further optimizations.

REFERENCES
[1] Yee Hui Lee, Mohamed Khalil-Hani, Muhammad Nadzir Marsono, et al. An

fpga-based quantum computing emulation framework based on serial-parallel
architecture. International Journal of Reconfigurable Computing, 2016, 2016.

[2] Yunpyo Hong, Seokhun Jeon, Sihyeong Park, and Byung-Soo Kim. Quantum cir-
cuit simulator based on fpga. In 2022 13th International Conference on Information
and Communication Technology Convergence (ICTC), pages 1909–1911, 2022.

[3] Andrew W Cross, Lev S Bishop, John A Smolin, and Jay M Gambetta. Open
quantum assembly language. arXiv preprint arXiv:1707.03429, 2017.

[4] Philippe Coussy and Adam Morawiec. High-level synthesis, volume 1. Springer,
2010.

[5] Marc Bataille. Quantum circuits of cnot gates. arXiv preprint arXiv:2009.13247,
2020.

[6] Alveo U200 Data Center Accelerator Card. https://www.xilinx.com/products/boards-
and-kits/alveo/u200.htmloverview.

[7] IBM Simulators overview. https://quantum-
computing.ibm.com/lab/docs/iql/manage/simulator.

2

	Abstract
	1 Introduction
	2 Proposed Framework
	2.1 QASM Parsing
	2.2 FPGA Architecture

	3 Experimental Results
	4 Conclusion and Future work
	References

