

Investigating Anomalies in Compute Clusters: An Unsupervised Learning Approach

Yiyang Lu[†], Jie Ren[†], Yasir Alanazi[§], Ahmed Mohammed[§], Diana McSpadden[§], Laura Hild[§], Mark Jones[§], Wesley Moore[§], Malachi Schram[§], Bryan Hess[§], Evgenia Smirni[†]

§Thomas Jefferson National Accelerator Facility

[†]College of William and Mary

Motivation

- Managing cluster-level anomalies, even at smaller scales, is complex due to interconnected jobs and infrastructure.
- Compute clusters benefit from the timely detection of anomalous events and detailed root cause analysis.
- ✓ Enable preemptive detection of hardware failures.
- ✓ Enable proactive job redistribution to prevent job progress loss due to system anomalies.
- ✓ Alleviate the system administrator's burden in system maintenance and reduces the time required for anomaly resolution.

Challenges

- ➤ Labelling anomalies for model training is impractical in compute clusters.
- Only 0.035% anomalies in all monitored data in real-world HPC cluster[1].
- > Large amount of monitored metrics and multiple possible sources of anomalies.
- Due to a lack of understanding of which monitored metrics are significant in identifying anomalies, it's hard to choose appropriate metrics for detection.
- Hardware heterogeneity increases complicity of compute cluster management.
- Anomaly detection on nodes with different hardware properties.

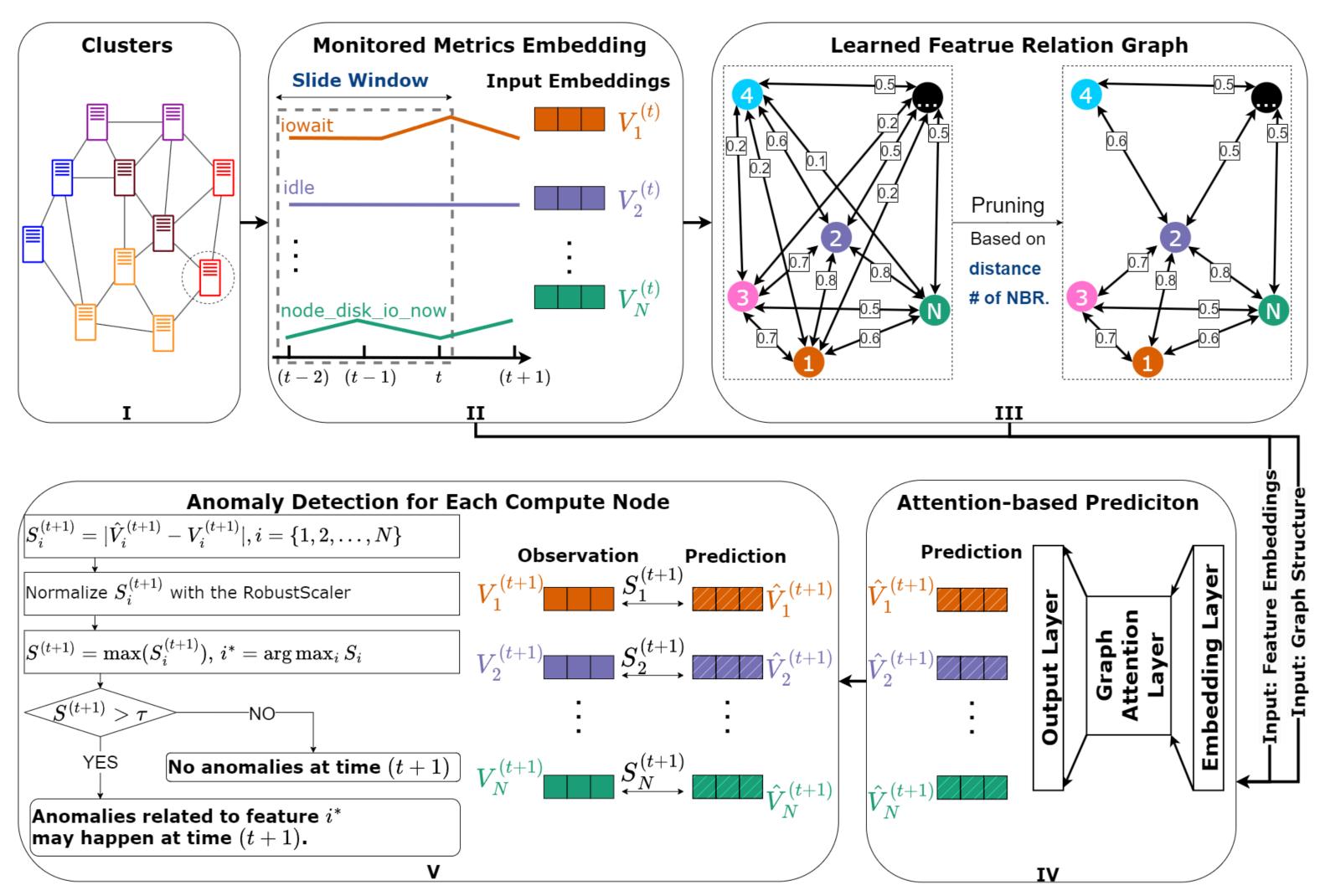
Attention-based Graph Neural Network

Goal:

- Compute node level anomaly prediction.
- Hardware component level root cause analysis.

Method:

- Unsupervised anomaly detection: only normal events collected for training.
- > Learn the relations among the N monitored metrics within one compute node.
- Identify anomalies with significant deviations of predicted future time series from expected behavior for each monitored metrics.



Workflow of using attention-based GNN for anomaly prediction

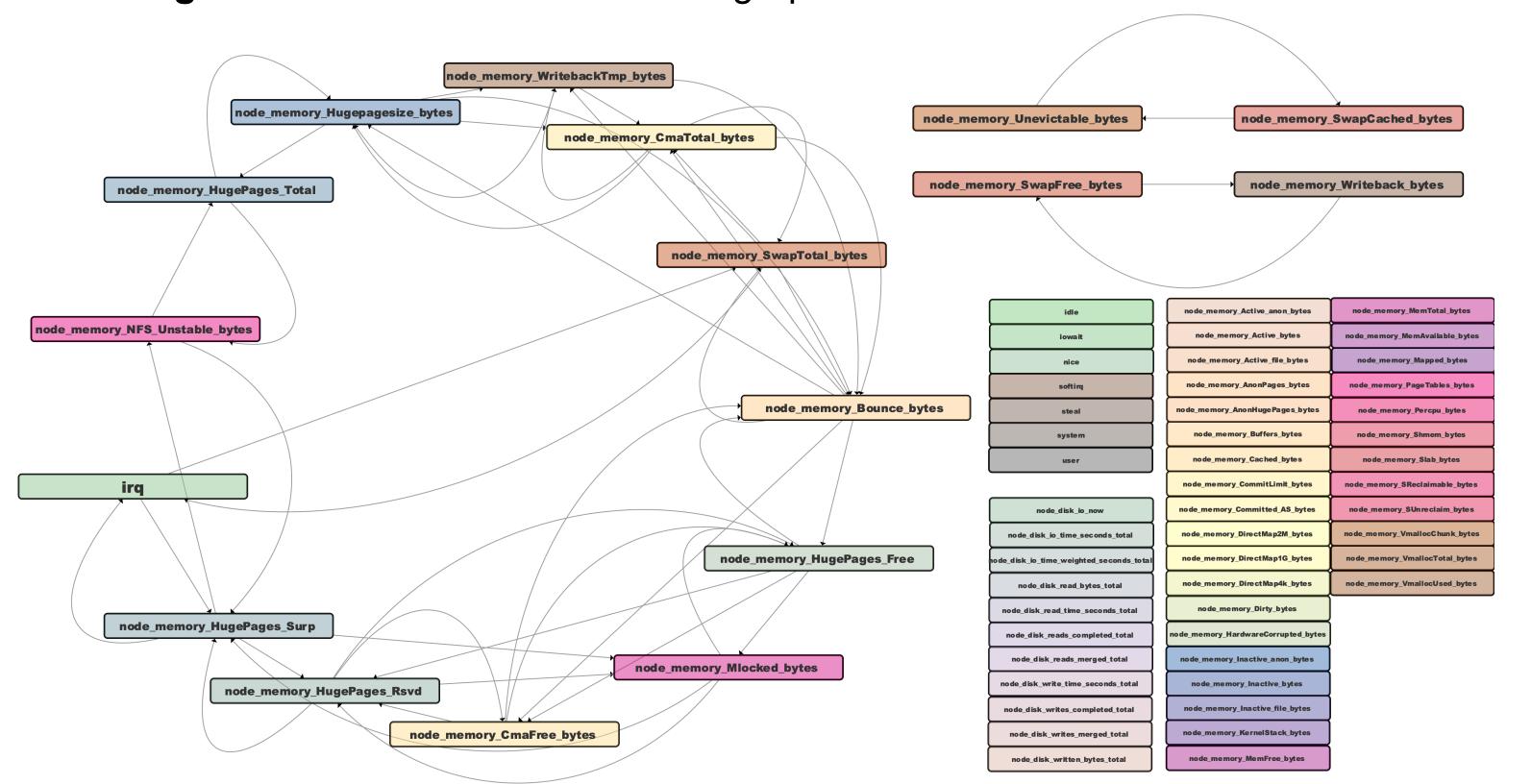
Evaluation

We investigate anomalies in a dataset collected from 332 compute nodes, comprising a total of 181GB of monitored metrics. All compute nodes can be categorized into five groups (i.e., G1-G5), each with distinct hardware characteristics.

Learned graph relations

Directed graph construction based on all the monitored metrics within a compute node.

> prune the fully connected graph by considering the **cosine similarity** and the **number of neighbors** for each node within the graph.



Learned graph relations with 66 monitored metrics from CPU, memory and disk from all compute nodes in G1

* Efficiency in detecting synthetic anomalies

- Injecting noise with gaussian distribution on different monitored metrics to conduct a synthetic dataset with anomalies.
- \succ The threshold of deviations (τ) is set as a specific centile of the normal data.
- Report *precision* and *F1 Score* for anomalous node identification and *accuracy of root cause* analysis, defined as the ratio of successful root cause identifications to the predicted anomalies.

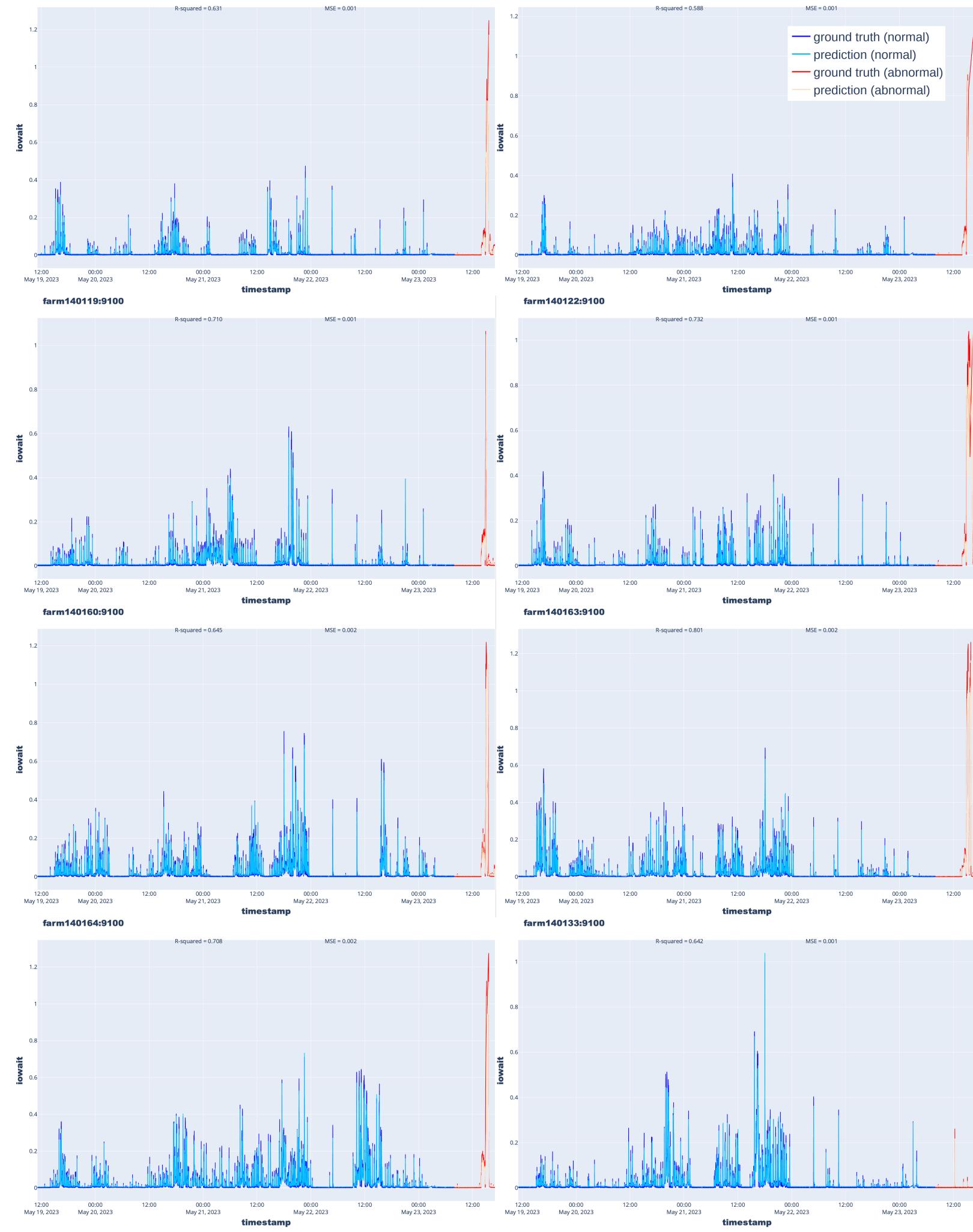
			G1	G2	G3	G4	G5	Average
CPU	Precision (F1 Score)	τ = p99.99	0.72 (0.8)	0.72 (0.68)	0.92 (0.73)	1 (0.95)	1 (1)	0.87 (0.83)
		τ = p100	1 (0.18)	1 (0.10)	1 (0.57)	1 (0.67)	1 (0.92)	1 (0.49)
	Root Cause Accuracy	τ = p99.99	0.68	0.56	0.92	1	1	0.83
		τ = p100	1	1	0.875	1	1	0.98
Memory	Precision (F1 Score)	τ = p99.99	0.74 (0.85)	0.86 (0.9)	1 (0.71)	1 (0.89)	1 (1)	0.92 (0.87)
		$\tau = p100$	1 (0.86)	1 (0.1)	O (0)	1 (0.57)	1 (0.92)	0.8 (0.49)
	Root Cause Accuracy	$\tau = p99.99$	0.74	0.82	1	1	1	0.91
		$\tau = p100$	1	1	0	1	1	0.8
Disk	Precision (F1 Score)	τ = p99.99	0.63 (0.62)	0.79 (0.86)	1 (0.92)	1 (0.92)	1 (1)	0.88 (0.86)
		τ = p100	O (0)	1 (0.1)	O (0)	1 (0.4)	1 (0.71)	0.6 (0.24)
	Root Cause Accuracy	$\tau = p99.99$	0.47	0.75	1	1	1	0.84
		τ = p100	0	1	0	1	1	0.6

Observation:

- ✓ We successfully detected anomalies and their root causes in most cases.
- √ '0' value indicates there is no anomalies been detected due to the overconfident uncertainty estimate.

* Efficiency in detecting anomalies on real-world cluster

The plot illustrates the predictions versus true values of *iowait* for eight nodes over time. Anomalies appear on the disks of all nodes around 12:00 on May 23rd.



Observation:

- ✓ The GNN model's mean squared error (MSE) on real-world data is just 0.001.
- ✓ The model accurately detects anomalies, including nodes that lack a clearly anomalous signature such as farm140133, aligning with user-level abnormal event logging.

Conclusion and Future Work

- By learning complex dependencies between monitored metrics and adopting attention mechanisms, the GNN model accurately identifies anomalous behavior.
- > Root cause analysis further allows for quickly pinpointing anomalous within a node.
- In future work, we aim to enable continual learning with GNN to detect anomalies with varying morphology in the complex, dynamic compute cluster.

[1] RUAD: unsupervised anomaly detection in HPC systems, Martin Molan, Andrea Borghesi, Daniele Cesarini, Luca Benini, Andrea Bartolini, arxiv, 2023