
DFToy:
A new proxy app for DFT calculations

Arjen Tamerus 1 Phil Hasnip 2

1University of Cambridge 2University of York

Plane-wave DFT: current barriers

With the changes that the Exascale era has brought to HPC architectures, codes

need to adapt to fully utilise the hardware. In CASTEP specifically, we have iden-

tified the following issues:

High communication overhead: a significant portion of calculation time is

spent transforming between real and reciprocal space - a global, all-to-all

Fourier transform.

Unfavourable memory access patterns: non-coalesced memory access and

indirection.

Reliance on double precision: increases memory pressure, and limits GPU

compute to datacentre-level chips.

High memory allocation/transfer/bandwidth pressure - limits effective use of

accelerators and stresses interconnects.

In future work, DFToy will be a useful platform to experiment with alternative,

novel algorithms to work around these issues - e.g. using mixed-precision ap-

proaches, more efficient FFT algorithms, and realspace-only algorithms to avoid

having to map between real and reciprocal space.

But why?

Why do we need a DFT proxy app? There are several issues with traditional

DFT applications that make them less-than-ideal for benchmarking or novel

development:

They tend to be highly complex, comprising 500k+ lines of code written by

multiple contributors over multiple decades - lots of legacy, rigid structures.

Fortran is often the language of choice. Fortran is great, but inflexible -

writing e.g. efficient GPU code can be a pain.

Licensing can be an issue - it’s often non-free even if the code may be

free-as-in-beer for academics.

Expertise is required to create, tweak and optimise a benchmark for a new

system.

DFToy offers a simplified, free-as-in-beer-and-speech, no-knowledge-required

benchmarking platform - just compile and run. It’s modular design simplifies

the implementation of novel algorithms or linking to alternative libraries.

Resources

Interested? Scan the QR code below for the repository and other materials.

This work is part of the Cambridge Open Zettascale Lab.

The DFT Scaling crisis

Materials modelling codes are some of the largest consumers of core hours on many TOP500-ranked supercomputers. Codes like

VASP, CASTEP, Quantum Espresso and others frequently top the rankings when it comes to core hours consumed on the UK’s

national supercomputer ARCHER2[1], and many other systems show similar statistics.

These density functional theory based codes have applications in material discovery, the development of new battery materials,

medical molecules, superconductor research and many more fields beside those. There is therefore no reason to expect the

popularity and resource usage of these code to diminish anytime soon - if anything, the opposite is more likely[3].

Unfortunately, traditional DFT codes have some computational characteristics that limit their scalability to new Exascale or even

large Petascale computing clusters. A further complicating factor is that these codes often have had decades of development on

classical HPC infrastructures - making them robust, but also highly complex and hard to adapt to modern architectures.

Introducing DFToy

DFToy is:

1. An easy-to-run, simple-to-understand benchmark.

2. A small, modular, easy-to-extend platform for developing novel algorithms.

3. A model for the parallel scaling behaviour of plane-wave DFT codes on various architectures.

DFToy was conceived as a more effective way to develop and experiment with DFT algorithms. By stripping away the legacy

and complexities of established codes and isolating the core computational load into a small code, we create a much more

accessible platform.

In its current state, DFToy implements a full DFT-alike calculation using an iterative conjugate-gradient solver. It captures the

most significant computational characteristics - the all-to-all communications of the FFTs used for realspace-to-reciprocal-space

conversion and vice versa, and the O(n3) scaling dense matrix multiplications.
Future work includes:

Assessing DFToy’s use as a procurement and performance benchmark.

Porting the code to accelerators and implementing novel, better-scaling algorithms.

Creating a parallel behaviour model of DFToy that auto-tunes the code for optimal performance.

Taking our findings from DFToy experiments and porting them to a real DFT code (CASTEP).

References

[1] Archer2 usage statistics - https://www.archer2.ac.uk/support-access/status.html#usage-statistics.

[2] Dftoy - https://github.com/arjentamerus/dftoy.

[3] Leopold talirz, edoardo aprà, jonathan e. moussa, & samuel poncé. (2023). ltalirz/atomistic-software: v2023.1.28 (v2023.1.28). zenodo. https://doi.org/10.5281/zenodo.7578861.

This work was performed using resources provided by the Cambridge Service for Data Driven Discovery (CSD3) operated by the University of Cambridge Research Computing Service

(www.csd3.cam.ac.uk), provided by Dell EMC and Intel using Tier-2 funding from the Engineering and Physical Sciences Research Council (capital grant EP/T022159/1), and DiRAC

funding from the Science and Technology Facilities Council (www.dirac.ac.uk).

The simple maths

DFToy’s main computational load is finding theminimum energy of a fake ’atom’

of ”nonexistium”. This is done by constructing the Hamiltonian matrix Ĥ from

the semi-arbitrarily defined Kinetic energy and local and non-local potentials:

Ĥ = T̂ + V̂loc + V̂nl

As DFToy is not concerned about real-world materials - we just want to model

the scaling behaviour - we can significantly simplify the Hamiltonian’s compo-

nents. Each of the Hamiltonian’s components is implemented as an NxNxN
matrix, representing a sampled force field with radius r = 1 and sampling reso-
lution s, giving us N = 2s + 1 accounting for a zero point. We can change the
problem size by increasing the sampling resolution, i.e. the number ofwavevec-

tors w in our calculation (w = (2s + 1)3).
We find our solution by finding the lowest M energy states - making this ef-

fectively an Eigensolver implemented with an iterative CG algorithm.

Comparative benchmarks

Figure 1. CASTEP scaling.

Figure 2. DFToy scaling.

zettascale.hpc.cam.ac.uk Supercomputing conference - November 2023 at748@cam.ac.uk

https://www.zettascale.hpc.cam.ac.uk
mailto:at748@cam.ac.uk

