DFToy: A new proxy app for DFT applications

Arjen Tamerus
at748@cam.ac.uk
University of Cambridge
Cambridge, UK

ABSTRACT

Electronic structure codes based on density functional theory are
a significant consumer of HPC resources, and play an important
role in cutting-edge research on novel materials. As computing
resources continue to increase these codes are used to investigate
ever more complex materials. Unfortunately, DFT-based codes tend
to be large, complex, and developed for past-generation hardware
and can be hard to adapt to the current model of high-performance
computing architectures.

This work introduces a new, low-complexity proxy-application
for DFT codes that offers a low-access-barrier benchmarking plat-
form, parallel scaling model, and experimental platform for the
development of novel algorithms that can better exploit current
hardware architectures.

ACM Reference Format:

Arjen Tamerus and Phil Hasnip. 2023. DFToy: A new proxy app for DFT
applications. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 2 pages. https://doi.org/XXXXXXX XXXXXXX

1 INTRODUCTION

Materials modelling codes are some of the largest consumers of
core hours on many TOP500-ranked supercomputers. Codes like
VASP, CASTEP, Quantum Espresso and others frequently top the
rankings when it comes to core hours consumed on the UK’s na-
tional supercomputer ARCHER2[1], and many other systems show
similar statistics.

These density functional theory based codes have applications
in material discovery, the development of new battery materials,
medical molecules, superconductor research and many more fields
beside those. There is therefore no reason to expect the popularity
and resource usage of these code to diminish anytime soon - if
anything, the opposite is more likely: the number of citations of
DFT and other atomistic codes is trending upwards[4][3].

Unfortunately, traditional DFT codes have some computational
characteristics that limit their scalability to new Exascale or even
large Petascale computing clusters. A further complicating factor is
that these codes often have had decades of development on classical
HPC infrastructures - making them robust, but also highly complex
and hard to adapt to modern architectures.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA

© 2023 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/XXXXXXX.XXXXXXX

Phil Hasnip
philhasnip@york.ac.uk
University of York
York, UK

2 DFT SCALING BOTTLENECKS

With the changes that the Exascale era has brought to HPC architec-
tures, codes need to adapt to fully utilise the hardware. In CASTEP
specifically, we have identified the following issues:

e High communication overhead: a significant portion of calcu-
lation time is spent transforming between real and reciprocal
space - a global, all-to-all Fourier transform.

o Unfavourable memory access patterns: non-coalesced mem-
ory access and indirection.

e Reliance on double precision: increases memory pressure,
and limits GPU compute to datacentre-level chips.

¢ High memory allocation/transfer/bandwidth pressure - lim-
its effective use of accelerators and stresses interconnects.

3 DFTOY

In order to adapt to the modern HPC architectures of the Exascale
era, the classic DFT codes will have to significantly adapt their code
bases. Unfortunately, these codes tend to be large (O(100000) to
0(1000000) LoC), dense, quite complicated - and often governed by
anon-free license. This makes updating these codes, e.g. implement-
ing effective GPU support, a non-trivial exercise especially without
a solid understanding of the entire code bases and its underlying
mathematical foundation.

We introduce DFToy[2], a new proxy-app that emulates the
computational load of DFT codes. DFToy isolates the core compu-
tational load from DFT calculations in a simplified (currently a few
thousand LoC) but representative code.

As currently implemented, DFToy implements a full DFT-alike
(but simplified) calculation. It captures the most significant compu-
tational characteristics found in density functional theory codes -
importantly, the expensive all-to-all communication pattern used
by the Fast Fourier Transform that is used to convert between real
and reciprocal space, and vice versa; and the O(n®) scaling of the
dense matrix multiplications used in these codes.

4 THE ENGINE

DFToy’s main computational load is finding the minimum energy
of a fake ’atom’ of "nonexistium”. This is done by constructing the
Hamiltonian matrix H from the semi-arbitrarily defined Kinetic
energy and local and non-local potentials:

H=T+Vipe +Vy
As DFToy is not concerned about real-world materials - we
just want to model the scaling behaviour - we can significantly
simplify the Hamiltonian’s components.Each of the Hamiltonian’s
components is implemented as an NxNxN matrix, representing
a sampled force field with radius r = 1 and sampling resolution s,
giving us N = 2s+1 accounting for a zero point. We can change the

https://orcid.org/0000-0001-7907-4384
https://orcid.org/0000-0002-4314-4093
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Conference’17, July 2017, Washington, DC, USA

problem size by increasing the sampling resolution, i.e. the number
of wavevectors w in our calculation (w = (2s + 1)3).

We find our solution by finding the lowest M energy states - mak-
ing this effectively an Eigensolver implemented with an iterative
CG algorithm.

5 DFTOY VS CASTEP - PRELIMINARY
BENCHMARKS

In order to investigate DFToy’s scaling behaviour, we ran a bench-
mark on up to four nodes of the Icelake partition of the Cam-
bridge supercomputer, CSD3. We compared a CASTEP 23 run of
the Solid Benzene benchmark (figure 1) to a DFToy calculation
using a wavevector resolution of 125, searching for the 8 lowest
Eigenstates (figure 2).

CASTEP 23

Solid Benzene, no_improve_wvfn

40
0
20
10

0

1x76 2x38 4x19 4x38 476 4x38X20MP 4x19x40MP

seconds

nodes/processesfthreads

Figure 1: CASTEP: Solid benzene benchmark

200

150

100

50

0
1x76 2x38

Figure 2: DFToy benchmark

DFToy runtime

-w 125-5 8 (-nl 1)

seconds

4x19 4x38 4x76 Ax38x20MP 4x19x40MP

nodes/processesfthreads

While there is stil some work left to do on the Hybrid MPI/OpenMP
implementation in DFToy - which shows in the reversed scaling
behaviour of the OpenMP-enabled runs. The pure MPI benchmarks
show a closer match to CASTEP’s behaviour. Especially interesting
is the increased performance when running on the same number of
cores, but on higher node counts - i.e. reducing the per-node utili-
sation. This seems to indicate contention for memory bandwidth,

Arjen Tamerus and Phil Hasnip

which supports the claim that DFT codes are memory bandwidth
hungry. Given the fact that CPU core counts seem to increase faster
than CPU-to-RAM bandwidth, this is one of the areas that would
be interesting to investigate with DFToy in the future.

6 FUTURE APPLICATIONS

With our first milestone - a functional DFT-alike proxy application
with similar scaling behaviour to "real’ DFT codes - close to comple-
tion, we can look to future applications and features we are hoping
to implement.

As DFToy is self-contained, free and open source, and requires
no domain knowledge to run we consider it to be an excellent tool
to use for performance and procurement benchmarking, and will
working to make sure it’s behaviour matches well enough to the
’big codes’ to fulfil this promise. We also aim to develop a parallel
behaviour model of the code, predicting the most efficient way
to distribute it’s calculation across parallel methods on any given
hardware - and auto-tuning the application to run as efficiently as
possible with minimal user input.

We will also use DFToy to investigate novel algorithms and the
(more efficient) use of current and novel accelerators in an effort to
avoid the current bottlenecks suffered by DFT calculations.

We hope to eventually bring any successful work in DFToy into
CASTEP, to support efficient use of future HPC architectures and
enable research into increasingly complex materials.

ACKNOWLEDGMENTS

This work was performed using resources provided by the Cam-
bridge Service for Data Driven Discovery (CSD3) operated by the
University of Cambridge Research Computing Service
(www.csd3.cam.ac.uk), provided by Dell EMC and Intel using Tier-
2 funding from the Engineering and Physical Sciences Research
Council (capital grant EP/T022159/1), and DiRAC funding from the
Science and Technology Facilities Council (www.dirac.ac.uk).

REFERENCES

[1] [n.d.]. ARCHER?2 usage statistics - https://www.archer2.ac.uk/support-access/sta-
tus.html#usage-statistics.

[2] [n.d.]. DFToy - https://github.com/ArjenTamerus/DFToy.

[3] [n.d]. Leopold Talirz, Edoardo Apra, Jonathan E. Moussa, & Samuel
Poncé. (2023). ltalirz/atomistic-software: v2023.1.28 (v2023.1.28). Zenodo.
https://doi.org/10.5281/zenodo.7578861.

[4] Leopold Talirz, Luca M. Ghiringhelli, and Berend Smit. 2021. Trends in atomistic
simulation software usage [Article v1.0]. Living Journal of Computational Molecular
Science 3, 1 (oct 2021). https://doi.org/10.33011/livecoms.3.1.1483

Received 12 August 2023

https://doi.org/10.33011/livecoms.3.1.1483

	Abstract
	1 Introduction
	2 DFT scaling bottlenecks
	3 DFToy
	4 The engine
	5 DFToy vs CASTEP - preliminary benchmarks
	6 Future applications
	Acknowledgments
	References

