Symmetric Block-Cyclic Distribution: Fewer Communications Leads to Faster Dense Cholesky Factorization

Dallas, hoc
TX accelerates.

Olivier Beaumont, Philippe Duchon, Lionel Eyraud-Dubois, Julien Langou, Mathieu Vérité

LaBRI, Inria Center at the University of Bordeaux
University of Colorado, Denver

Inzia LaBRI

Table of Contents

(1) Introduction

(2) Symmetric Distribution
(3) Cholesky factorization

4 2.5 D Cholesky implementation
(5) Conclusions

Data placement for Linear Algebra operations

- Linear Algebra is everywhere in Scientific Computing
- Solving Partial Differential Equations becomes $A x=b$ after discretization
- Very computationally intensive: distributed execution necessary
- Tightly coupled: importance of minimizing communications

■ Objective: reduce the total volume of communications

In this talk

■ Focus on symmetric operations: SYRK $\left(C+=A \cdot A^{\top}\right)$, Cholesky

- Propose a Symmetric Block Cyclic distribution, improves over the standard 2DBC

■ Propose a 2.5D variant of a task-based implementation of Cholesky factorization
■ Provide an experimental validation with significantly improved performance

Matrix Multiplication, 2DBC, communication volume

GEneral Matrix Multiplication: $C+=A \cdot B$ on P nodes

$$
\begin{aligned}
& \text { for } i=1 \ldots M-1 \text { do } \\
& \text { for } j=1 \ldots M-1 \text { do } \\
& \text { for } k=1 \ldots N-1 \text { do } \\
& \mathbf{C}_{i, j}+=\mathbf{A}_{i, k} \cdot \mathbf{B}_{k, j}
\end{aligned}
$$

Matrix Multiplication, 2DBC, communication volume

2D Block Cyclic $2 \times 4, P=8$ nodes

for $i=1 \ldots M-1$ do
for $j=1 \ldots M-1$ do
for $k=1 \ldots N-1$ do
$\mathbf{C}_{i, j}+=\mathbf{A}_{i, k} \cdot \mathbf{B}_{k, j}$ (tiled, owner-computes)

Distributed execution with a runtime system

- Automatically builds the dependency graph from sequential code
- Data is distributed on the nodes according to the distribution
- Communications are managed seamlessly by the runtime system

Matrix Multiplication, 2DBC, communication volume

2D Block Cyclic $2 \times 4, P=8$ nodes

for $i=1 \ldots M-1$ do
for $j=1 \ldots M-1$ do
for $k=1 \ldots N-1$ do
$\mathbf{C}_{i, j}+=\mathbf{A}_{i, k} \cdot \mathbf{B}_{k, j}$ (tiled, owner-computes)

Distributed execution with a runtime system

- Automatically builds the dependency graph from sequential code
- Data is distributed on the nodes according to the distribution
- Communications are managed seamlessly by the runtime system

Matrix Multiplication, 2DBC, communication volume

2D Block Cyclic $2 \times 4, P=8$ nodes

for $i=1 \ldots M-1$ do
for $j=1 \ldots M-1$ do
for $k=1 \ldots N-1$ do
$\mathbf{C}_{i, j}+=\mathbf{A}_{i, k} \cdot \mathbf{B}_{k, j}$ (tiled, owner-computes)

Distributed execution with a runtime system

- Automatically builds the dependency graph from sequential code
- Data is distributed on the nodes according to the distribution
- Communications are managed seamlessly by the runtime system

Matrix Multiplication, 2DBC, communication volume

2D Block Cyclic $2 \times 4, P=8$ nodes

for $i=1 \ldots M-1$ do
for $j=1 \ldots M-1$ do
for $k=1 \ldots N-1$ do
$\mathbf{C}_{i, j}+=\mathbf{A}_{i, k} \cdot \mathbf{B}_{k, j}$ (tiled, owner-computes)

Communication volume: number of values communicated
Each tile of A is used by q nodes, each tile of B by p nodes.

$$
V=M N(q-1)+M N(p-1)=M N(p+q-2)
$$

2DBC, Arithmetic Intensity

Arithmetic Intensity: $\rho=\frac{\text { number of computations }}{\text { communication volume }}$

- Total computations: $2 M^{2} N$ (N products and N additions per element of C)

$$
\rho=\frac{2 M^{2} N}{M N(p+q-2)}
$$

2DBC, Arithmetic Intensity

Arithmetic Intensity: $\rho=\frac{\text { number of computations }}{\text { communication volume }}$

- Total computations: $2 M^{2} N$ (N products and N additions per element of C)

$$
\rho=\frac{2 M^{2} N}{M N(p+q-2)} \simeq \frac{2 M^{2} N}{2 M N \sqrt{P}}=\frac{M}{\sqrt{P}} \quad \text { if } p \simeq q \simeq \sqrt{P}
$$

2DBC, Arithmetic Intensity

Arithmetic Intensity: $\rho=\frac{\text { number of computations }}{\text { communication volume }}$

- Total computations: $2 M^{2} N$ (N products and N additions per element of C)

$$
\rho=\frac{2 M^{2} N}{M N(p+q-2)} \simeq \frac{2 M^{2} N}{2 M N \sqrt{P}}=\frac{M}{\sqrt{P}} \quad \text { if } p \simeq q \simeq \sqrt{P}
$$

- $S=$ number of elements of C per node $=\frac{M^{2}}{P}$

$$
\rho=\sqrt{S}
$$

2DBC, Arithmetic Intensity

Arithmetic Intensity: $\rho=\frac{\text { number of computations }}{\text { communication volume }}$

- Total computations: $2 M^{2} N$ (N products and N additions per element of C)

$$
\rho=\frac{2 M^{2} N}{M N(p+q-2)} \simeq \frac{2 M^{2} N}{2 M N \sqrt{P}}=\frac{M}{\sqrt{P}} \quad \text { if } p \simeq q \simeq \sqrt{P}
$$

- $S=$ number of elements of C per node $=\frac{M^{2}}{P}$

$$
\rho=\sqrt{S}
$$

- This is optimal

Table of Contents

(2) Symmetric Distribution
(3) Cholesky factorization

4 2.5 D Cholesky implementation
(5) Conclusions

Symmetric multiplication is SYRK: $C+=A \cdot A^{\top}$

SYRK: $C+=A \cdot A^{\top}$ (SYmmetric Rank-K update)
dominant part of Cholesky factorization
(solve $A=L \cdot L^{\top}$ for symmetric positive definite matrix A)

Symmetric multiplication is SYRK: $C+=A \cdot A^{\top}$

SYRK: $C+=A \cdot A^{\top}$ (SYmmetric Rank-K update)
dominant part of Cholesky factorization
(solve $A=L \cdot L^{\top}$ for symmetric positive definite matrix A)

Symmetric multiplication is SYRK: $C+=A \cdot A^{\top}$

2D Block Cyclic $2 \times 4, P=8$ nodes

Symmetric multiplication is SYRK: $C+=A \cdot A^{\top}$

2D Block Cyclic $2 \times 4, P=8$ nodes

Symmetric multiplication is SYRK: $C+=A \cdot A^{\top}$

2D Block Cyclic $2 \times 4, P=8$ nodes

Symmetric multiplication is SYRK: $C+=A \cdot A^{\top}$

2D Block Cyclic $2 \times 4, P=8$ nodes

Symmetric multiplication is SYRK: $C+=A \cdot A^{\top}$

2D Block Cyclic $2 \times 4, P=8$ nodes

Symmetric multiplication is SYRK: $C+=A \cdot A^{\top}$

Communication volume

Each tile of A is used by $p+q-1$ nodes: $V=M N(p+q-2)$

Symmetric multiplication is SYRK: $C+=A \cdot A^{\top}$

2D Block Cyclic $2 \times 4, P=8$ nodes

Communication volume

Each tile of A is used by $p+q-1$ nodes: $V=M N(p+q-2)$
Arithmetic Intensity: $\rho=\frac{M^{2} N}{2 M N \sqrt{P}}=\frac{M}{2 \sqrt{P}}$, and since $S=\frac{M^{2}}{2 P}$ now: $\rho=\frac{\sqrt{S}}{\sqrt{2}}$

Symmetric multiplication is SYRK: $C+=A \cdot A^{\top}$

2D Block Cyclic $2 \times 4, P=8$ nodes

Communication volume

Each tile of A is used by $p+q-1$ nodes: $V=M N(p+q-2)$
Arithmetic Intensity: $\rho=\frac{M^{2} N}{2 M N \sqrt{P}}=\frac{M}{2 \sqrt{P}}$, and since $S=\frac{M^{2}}{2 P}$ now: $\rho=\frac{\sqrt{S}}{\sqrt{2}}$ Upper bound (tight): $\sqrt{2 S}$ [SPAA'2022]

SBC: Symmetric Block Cyclic - basic version

Goal: same nodes on rows and columns

SBC: Symmetric Block Cyclic - basic version

Goal: same nodes on rows and columns Symmetric Block Cyclic $P=8$

$$
r \begin{aligned}
\begin{array}{|l|l|}
\hline \begin{array}{ll}
1 & \\
\hline & 3 \\
\hline 4 & 5 \\
\hline
\end{array} \\
\underset{r}{\longleftrightarrow} \\
\longleftrightarrow
\end{array} \\
\hline
\end{aligned} \quad P=\frac{r^{2}}{2} \quad \Leftrightarrow \quad r=\sqrt{2 P}
$$

SBC: Symmetric Block Cyclic - basic version

Goal: same nodes on rows and columns Symmetric Block Cyclic $P=8$

$$
P=\frac{r^{2}}{2} \quad \Leftrightarrow \quad r=\sqrt{2 P}
$$

SBC: Symmetric Block Cyclic - basic version

Goal: same nodes on rows and columns Symmetric Block Cyclic $P=8$

SBC: Symmetric Block Cyclic - basic version

Goal: same nodes on rows and columns Symmetric Block Cyclic $P=8$

$$
P=\frac{r^{2}}{2} \quad \Leftrightarrow \quad r=\sqrt{2 P}
$$

SBC: Symmetric Block Cyclic - basic version

Goal: same nodes on rows and columns Symmetric Block Cyclic $P=8$

$$
P=\frac{r^{2}}{2} \quad \Leftrightarrow \quad r=\sqrt{2 P}
$$

SBC: Symmetric Block Cyclic - basic version

Goal: same nodes on rows and columns Symmetric Block Cyclic $P=8$

$$
P=\frac{r^{2}}{2} \quad \Leftrightarrow \quad r=\sqrt{2 P}
$$

Communication volume

One tile of A is needed by r nodes: $V=M N(r-1)$
Arithmetic intensity: $\rho=\frac{M^{2} N}{M N(r-1)}=\frac{M}{\sqrt{2 P}}=\sqrt{S}$

SBC: Extended version

Limitations of basic version

- not valid for odd values of r;

■ only a small subset of nodes on the diagonal of A.

SBC: Extended version

Limitations of basic version

- not valid for odd values of r;
- only a small subset of nodes on the diagonal of A.

Alternative way of allocating diagonal tiles of the SBC pattern

- Keep the set of $\frac{r(r-1)}{2}$ nodes, reuse them on the diagonal
- Create several patterns, alternate between them on matrix A.

	1	2	4	7
1		3	5	8
2	3		6	9
4	5	6		10
7	8	9	10	

Generic pattern

SBC: Extended version

Limitations of basic version

- not valid for odd values of r;
- only a small subset of nodes on the diagonal of A.

Alternative way of allocating diagonal tiles of the SBC pattern

- Keep the set of $\frac{r(r-1)}{2}$ nodes, reuse them on the diagonal
- Create several patterns, alternate between them on matrix A.

	1	2	4	7
1		3	5	8
2	3		6	9
4	5	6		10
7	8	9	10	

Generic pattern

Pattern 1

SBC: Extended version

Limitations of basic version

- not valid for odd values of r;
- only a small subset of nodes on the diagonal of A.

Alternative way of allocating diagonal tiles of the SBC pattern

- Keep the set of $\frac{r(r-1)}{2}$ nodes, reuse them on the diagonal
- Create several patterns, alternate between them on matrix A.

	1	2	4	7
1		3	5	8
2	3		6	9
4	5	6		10
7	8	9	10	

Generic pattern

Pattern 1

SBC: Extended version

Limitations of basic version

- not valid for odd values of r;
- only a small subset of nodes on the diagonal of A.

Alternative way of allocating diagonal tiles of the SBC pattern

- Keep the set of $\frac{r(r-1)}{2}$ nodes, reuse them on the diagonal
- Create several patterns, alternate between them on matrix A.

	1	2	4	7
1		3	5	8
2	3		6	9
4	5	6		10
7	8	9	10	

Generic pattern

1	1	2	4	7
1	3	3	5	8
2	3	6	6	9
4	5	6	10	10
7	8	9	10	7

Pattern 1

SBC: Extended version

Limitations of basic version

- not valid for odd values of r;
- only a small subset of nodes on the diagonal of A.

Alternative way of allocating diagonal tiles of the SBC pattern

- Keep the set of $\frac{r(r-1)}{2}$ nodes, reuse them on the diagonal
- Create several patterns, alternate between them on matrix A.

	1	2	4	7
1		3	5	8
2	3		6	9
4	5	6		10
7	8	9	10	

Generic pattern

Pattern 1

Pattern 2

SBC: Extended version

Limitations of basic version

- not valid for odd values of r;
- only a small subset of nodes on the diagonal of A.

Alternative way of allocating diagonal tiles of the SBC pattern

- Keep the set of $\frac{r(r-1)}{2}$ nodes, reuse them on the diagonal
- Create several patterns, alternate between them on matrix A.

	1	2	4	7
1		3	5	8
2	3		6	9
4	5	6		10
7	8	9	10	

Generic pattern

Pattern 1

Pattern 2

SBC: Extended version

Limitations of basic version

- not valid for odd values of r;
- only a small subset of nodes on the diagonal of A.

Alternative way of allocating diagonal tiles of the SBC pattern

- Keep the set of $\frac{r(r-1)}{2}$ nodes, reuse them on the diagonal
- Create several patterns, alternate between them on matrix A.

	1	2	4	7
1		3	5	8
2	3		6	9
4	5	6		10
7	8	9	10	

Generic pattern

Pattern 1

Pattern 2

- Create $\frac{r-1}{2}$ patterns for odd r
- Create r - 1 patterns for even r

Table of Contents

(1) Introduction
(2) Symmetric Distribution
(3) Cholesky factorization

4 2.5 D Cholesky implementation
(5) Conclusions

Task-based Cholesky - solve $A=L \cdot L^{\top}$ for SPD matrix A

$$
\begin{aligned}
& \text { for } i=1 \ldots N-1 \text { do } \\
& \mathbf{A}_{i, i} \leftarrow \operatorname{POTRF}\left(\mathbf{A}_{i, i}\right) \\
& \text { for } j=i+1 \ldots N-1 \text { do } \\
& \mathbf{A}_{j, i} \leftarrow \operatorname{TRSM}\left(\mathbf{A}_{j, i}, \mathbf{A}_{i, i}\right) \\
& \text { for } k=i+1 \ldots N-1 \text { do } \\
& \mathbf{A}_{k, k} \leftarrow \operatorname{SYRK}\left(\mathbf{A}_{k, k}, \mathbf{A}_{k, i}\right) \\
& \text { for } j=k+1 \ldots N-1 \text { do } \\
& \mathbf{A}_{j, k} \leftarrow \operatorname{GEMM}\left(\mathbf{A}_{j, k}, \mathbf{A}_{j, i}, \mathbf{A}_{k, i}\right)
\end{aligned}
$$

Right-looking Cholesky is mainly iterated SYRK

- One iteration: factorize panel, update trailing matrix (SYRK)
- Typical MPI-based implementations synchronize between iterations

Task-based Cholesky - solve $A=L \cdot L^{\top}$ for SPD matrix A

$$
\begin{aligned}
& \text { for } i=1 \ldots N-1 \text { do } \\
& \mathbf{A}_{i, i} \leftarrow \operatorname{POTRF}\left(\mathbf{A}_{i, i}\right) \\
& \text { for } j=i+1 \ldots N-1 \text { do } \\
& \mathbf{A}_{j, i} \leftarrow \operatorname{TRSM}\left(\mathbf{A}_{j, i}, \mathbf{A}_{i, i}\right) \\
& \text { for } k=i+1 \ldots N-1 \text { do } \\
& \mathbf{A}_{k, k} \leftarrow \operatorname{SYRK}\left(\mathbf{A}_{k, k}, \mathbf{A}_{k, i}\right) \\
& \text { for } j=k+1 \ldots N-1 \text { do } \\
& \mathbf{A}_{j, k} \leftarrow \operatorname{GEMM}\left(\mathbf{A}_{j, k}, \mathbf{A}_{j, i}, \mathbf{A}_{k, i}\right)
\end{aligned}
$$

Right-looking Cholesky is mainly iterated SYRK

- One iteration: factorize panel, update trailing matrix (SYRK)
- Typical MPI-based implementations synchronize between iterations

Task-based Cholesky - solve $A=L \cdot L^{\top}$ for SPD matrix A

$$
\begin{aligned}
& \text { for } i=1 \ldots N-1 \text { do } \\
& \mathbf{A}_{i, i} \leftarrow \operatorname{POTRF}\left(\mathbf{A}_{i, i}\right) \\
& \text { for } j=i+1 \ldots N-1 \text { do } \\
& \mathbf{A}_{j, i} \leftarrow \operatorname{TRSM}\left(\mathbf{A}_{j, i}, \mathbf{A}_{i, i}\right) \\
& \text { for } k=i+1 \ldots N-1 \text { do } \\
& \mathbf{A}_{k, k} \leftarrow \operatorname{SYRK}\left(\mathbf{A}_{k, k}, \mathbf{A}_{k, i}\right) \\
& \text { for } j=k+1 \ldots N-1 \text { do } \\
& \mathbf{A}_{j, k} \leftarrow \operatorname{GEMM}\left(\mathbf{A}_{j, k}, \mathbf{A}_{j, i}, \mathbf{A}_{k, i}\right)
\end{aligned}
$$

Right-looking Cholesky is mainly iterated SYRK

- One iteration: factorize panel, update trailing matrix (SYRK)
- Typical MPI-based implementations synchronize between iterations

Task-based Cholesky - solve $A=L \cdot L^{\top}$ for SPD matrix A

$$
\begin{aligned}
& \text { for } i=1 \ldots N-1 \text { do } \\
& \mathbf{A}_{i, i} \leftarrow \operatorname{POTRF}\left(\mathbf{A}_{i, i}\right) \\
& \text { for } j=i+1 \ldots N-1 \text { do } \\
& \mathbf{A}_{j, i} \leftarrow \operatorname{TRSM}\left(\mathbf{A}_{j, i}, \mathbf{A}_{i, i}\right) \\
& \text { for } k=i+1 \ldots N-1 \text { do } \\
& \mathbf{A}_{k, k} \leftarrow \operatorname{SYRK}\left(\mathbf{A}_{k, k}, \mathbf{A}_{k, i}\right) \\
& \text { for } j=k+1 \ldots N-1 \text { do } \\
& \mathbf{A}_{j, k} \leftarrow \operatorname{GEMM}\left(\mathbf{A}_{j, k}, \mathbf{A}_{j, i}, \mathbf{A}_{k, i}\right)
\end{aligned}
$$

Right-looking Cholesky is mainly iterated SYRK

- One iteration: factorize panel, update trailing matrix (SYRK)
- Typical MPI-based implementations synchronize between iterations

Task-based Cholesky - solve $A=L \cdot L^{\top}$ for SPD matrix A

$$
\begin{aligned}
& \text { for } i=1 \ldots N-1 \text { do } \\
& \mathbf{A}_{i, i} \leftarrow \operatorname{POTRF}\left(\mathbf{A}_{i, i}\right) \\
& \text { for } j=i+1 \ldots N-1 \text { do } \\
& \mathbf{A}_{j, i} \leftarrow \operatorname{TRSM}\left(\mathbf{A}_{j, i}, \mathbf{A}_{i, i}\right) \\
& \text { for } k=i+1 \ldots N-1 \text { do } \\
& \mathbf{A}_{k, k} \leftarrow \operatorname{SYRK}\left(\mathbf{A}_{k, k}, \mathbf{A}_{k, i}\right) \\
& \text { for } j=k+1 \ldots N-1 \text { do } \\
& \mathbf{A}_{j, k} \leftarrow \operatorname{GEMM}\left(\mathbf{A}_{j, k}, \mathbf{A}_{j, i}, \mathbf{A}_{k, i}\right)
\end{aligned}
$$

Right-looking Cholesky is mainly iterated SYRK

- One iteration: factorize panel, update trailing matrix (SYRK)
- Typical MPI-based implementations synchronize between iterations

Task-based Cholesky - solve $A=L \cdot L^{\top}$ for SPD matrix A

$$
\begin{aligned}
& \text { for } i=1 \ldots N-1 \text { do } \\
& \mathbf{A}_{i, i} \leftarrow \operatorname{POTRF}\left(\mathbf{A}_{i, i}\right) \\
& \text { for } j=i+1 \ldots N-1 \text { do } \\
& \mathbf{A}_{j, i} \leftarrow \operatorname{TRSM}\left(\mathbf{A}_{j, i}, \mathbf{A}_{i, i}\right) \\
& \text { for } k=i+1 \ldots N-1 \text { do } \\
& \mathbf{A}_{k, k} \leftarrow \operatorname{SYRK}\left(\mathbf{A}_{k, k}, \mathbf{A}_{k, i}\right) \\
& \text { for } j=k+1 \ldots N-1 \text { do } \\
& \mathbf{A}_{j, k} \leftarrow \operatorname{GEMM}\left(\mathbf{A}_{j, k}, \mathbf{A}_{j, i}, \mathbf{A}_{k, i}\right)
\end{aligned}
$$

Right-looking Cholesky is mainly iterated SYRK

- One iteration: factorize panel, update trailing matrix (SYRK)
- Typical MPI-based implementations synchronize between iterations

Task-based Cholesky - solve $A=L \cdot L^{\top}$ for SPD matrix A

$$
\begin{aligned}
& \text { for } i=1 \ldots N-1 \text { do } \\
& \mathbf{A}_{i, i} \leftarrow \operatorname{POTRF}\left(\mathbf{A}_{i, i}\right) \\
& \text { for } j=i+1 \ldots N-1 \text { do } \\
& \mathbf{A}_{j, i} \leftarrow \operatorname{TRSM}\left(\mathbf{A}_{j, i}, \mathbf{A}_{i, i}\right) \\
& \text { for } k=i+1 \ldots N-1 \text { do } \\
& \mathbf{A}_{k, k} \leftarrow \operatorname{SYRK}\left(\mathbf{A}_{k, k}, \mathbf{A}_{k, i}\right) \\
& \text { for } j=k+1 \ldots N-1 \text { do } \\
& \mathbf{A}_{j, k} \leftarrow \operatorname{GEMM}\left(\mathbf{A}_{j, k}, \mathbf{A}_{j, i}, \mathbf{A}_{k, i}\right)
\end{aligned}
$$

Right-looking Cholesky is mainly iterated SYRK

- One iteration: factorize panel, update trailing matrix (SYRK)
- Typical MPI-based implementations synchronize between iterations

Task-based Cholesky - solve $A=L \cdot L^{\top}$ for SPD matrix A

$$
\begin{aligned}
& \text { for } i=1 \ldots N-1 \text { do } \\
& \mathbf{A}_{i, i} \leftarrow \operatorname{POTRF}\left(\mathbf{A}_{i, i}\right) \\
& \text { for } j=i=1 \ldots N-1 \text { do } \\
& \mathbf{A}_{j, i} \leftarrow \operatorname{TRSM}\left(\mathbf{A}_{j, i}, \mathbf{A}_{i, i}\right) \\
& \text { for } k=i+1 \ldots N-1 \text { do } \\
& \mathbf{A}_{k, k} \leftarrow \operatorname{SYRK}\left(\mathbf{A}_{k, k}, \mathbf{A}_{k, i}\right) \\
& \text { for } j=k+1 \ldots N-1 \text { do } \\
& \mathbf{A}_{j, k} \leftarrow \operatorname{GEMM}\left(\mathbf{A}_{j, k}, \mathbf{A}_{j, i}, \mathbf{A}_{k, i}\right)
\end{aligned}
$$

Right-looking Cholesky is mainly iterated SYRK

- One iteration: factorize panel, update trailing matrix (SYRK)
- Typical MPI-based implementations synchronize between iterations

Task-based Cholesky - solve $A=L \cdot L^{\top}$ for SPD matrix A

Right-looking Cholesky is mainly iterated SYRK

- One iteration: factorize panel, update trailing matrix (SYRK)
- Typical MPI-based implementations synchronize between iterations

Task-based Cholesky - solve $A=L \cdot L^{\top}$ for SPD matrix A

Right-looking Cholesky is mainly iterated SYRK

- One iteration: factorize panel, update trailing matrix (SYRK)
- Typical MPI-based implementations synchronize between iterations

Task-based Cholesky - solve $A=L \cdot L^{\top}$ for SPD matrix A

Right-looking Cholesky is mainly iterated SYRK

- One iteration: factorize panel, update trailing matrix (SYRK)
- Typical MPI-based implementations synchronize between iterations

Task-based Cholesky - solve $A=L \cdot L^{\top}$ for SPD matrix A

Right-looking Cholesky is mainly iterated SYRK

- One iteration: factorize panel, update trailing matrix (SYRK)
- Typical MPI-based implementations synchronize between iterations

Task-based Cholesky - solve $A=L \cdot L^{\top}$ for SPD matrix A

Right-looking Cholesky is mainly iterated SYRK

- One iteration: factorize panel, update trailing matrix (SYRK)
- Typical MPI-based implementations synchronize between iterations
- Task-based allows for large lookahead and thus more parallelism
- Automatic handling of communications: easy to change the data allocation

Experimental results

Experimental setting

■ bora nodes of PlaFRIM, Bordeaux:

- 42 nodes, Intel Xeon Skylake Gold 6240, 36 cores per node
- $100 \mathrm{~Gb} / \mathrm{s}$ OmniPath network
- chameleon library, based on starpu runtime

■ Intel MKL 2020, Open MPI version 4.0.3

- One starpu process per node, each task executed on one core
- One core reserved for handling MPI comms, one for task submission \& scheduling
- tile size $b=500$

Experimental results: Cholesky factorization on $P \sim 28$ nodes

Chameleon+StarPU on bora cluster (36 cores per node: 1008 cores)

Table of Contents

(1) Introduction

(2) Symmetric Distribution
(3) Cholesky factorization
(4) 2.5 D Cholesky implementation
(5) Conclusions

2.5D Cholesky implementation

Main ideas

- Replicate the matrix on c slices of nodes

■ Perform iteration k on slice $k \bmod c$: updates of a tile accumulate on c nodes

- Reduce operation at the end to merge all updates

■ Task-based implentation: high lookahead avoids idle time

2.5D Cholesky implementation

Main ideas

- Replicate the matrix on c slices of nodes

■ Perform iteration k on slice $k \bmod c$: updates of a tile accumulate on c nodes

- Reduce operation at the end to merge all updates
- Task-based implentation: high lookahead avoids idle time

2.5D Cholesky implementation

Main ideas

- Replicate the matrix on c slices of nodes

■ Perform iteration k on slice $k \bmod c$: updates of a tile accumulate on c nodes

- Reduce operation at the end to merge all updates
- Task-based implentation: high lookahead avoids idle time

2.5D Cholesky: communication volume

- Can be used with any $2 D$ distribution, reproduced on c slices. $\frac{P}{c}$ nodes per slice
- Communication volume:
- 2DBC: $M^{2}\left(2 \sqrt{\frac{P}{c}}+c-1\right) \quad$ SBC: $M^{2}\left(\sqrt{\frac{2 P}{c}}+c-1\right)$

With limited memory S

■ Use as many slices as possible: $c=\frac{2 P S}{M^{2}}$

- Communication volume: $V=\frac{1}{2} \frac{M^{3}}{\sqrt{S}}+o\left(M^{3}\right)$ [Kwasniewki et al, SC'21]: $V \sim 1 \cdot \frac{M^{3}}{\sqrt{S}}$

With large memory

■ Select the value of c to minimize the communication volume

- For SBC, we obtain $c \sim \sqrt[3]{P / 2}$ and $r=2 c$, so that $V \sim 3 \sqrt[3]{1 / 2} \cdot S \sqrt[3]{P}$
- With 2DBC, $c \sim \sqrt[3]{P}$ and $V \sim 3 \cdot S \sqrt[3]{P}$: factor $\sqrt[3]{2} \simeq 1.26$ on comms and memory

2.5D version: experimental results $(c=3)$

Table of Contents

(1) Introduction
(2) Symmetric Distribution
(3) Cholesky factorization

4 2.5 D Cholesky implementation
(5) Conclusions

Conclusions

Contributions

- New Symmetric Block Cyclic distribution, adapted for SYRK \& Cholesky
- Lowers communication volume by a factor of $\sqrt{2}$
- Task-based 2.5D implementation of Cholesky factorization
- Significantly improved performance and scalability
- Can be applied to many other symmetric computations

Open questions

■ SBC: each node appears twice. Would higher counts improve the performance further?
■ Efficiency of 2.5D for Matrix Multiplication:

- In Cholesky, some reductions start very early \Rightarrow overlap with computations
- For GEMM/SYRK, same amount of work on all tiles: how to organize the reductions?

Ongoing work: recent results

Optimal TBC distribution

- Based on the TBS sequential algorithm from [SPAA'2022]
- Used in the context of the SYMM operation
- Also improves the performance of Cholesky

Ongoing work: recent results

Optimal TBC distribution

- Based on the TBS sequential algorithm from [SPAA'2022]
- Used in the context of the SYMM operation
- Also improves the performance of Cholesky

Ongoing work: recent results

Optimal TBC distribution

- Based on the TBS sequential algorithm from [SPAA'2022]
- Used in the context of the SYMM operation
- Also improves the performance of Cholesky

Distributions for any value of P

- 2DBC and SBC only efficient for specific values of P

■ Proposed Generalized 2DBC for non-symmetric case

- Proposed greedy GCR\&M for symmetric case

Thank you!

Questions?

https://solverstack.gitlabpages.inria.fr/chameleon/

