
Symmetric Block-Cyclic Distribution:
Fewer Communications Leads to
Faster Dense Cholesky Factorization

Olivier Beaumont, Philippe Duchon,
Lionel Eyraud-Dubois, Julien Langou, Mathieu Vérité

LaBRI, Inria Center at the University of Bordeaux
University of Colorado, Denver

Table of Contents

1 Introduction

2 Symmetric Distribution

3 Cholesky factorization

4 2.5D Cholesky implementation

5 Conclusions

Beaumont et. al Symmetric Block Cyclic Distribution 2 / 21

Context

Data placement for Linear Algebra operations

Linear Algebra is everywhere in Scientific Computing
• Solving Partial Differential Equations becomes Ax = b after discretization

Very computationally intensive: distributed execution necessary

Tightly coupled: importance of minimizing communications

Objective: reduce the total volume of communications

In this talk

Focus on symmetric operations: SYRK (C += A · AT), Cholesky

Propose a Symmetric Block Cyclic distribution, improves over the standard 2DBC

Propose a 2.5D variant of a task-based implementation of Cholesky factorization

Provide an experimental validation with significantly improved performance

Beaumont et. al Symmetric Block Cyclic Distribution 3 / 21

Matrix Multiplication, 2DBC, communication volume

CA

B

M

M

N
GEneral Matrix Multiplication: C += A · B
on P nodes

2D Block Cyclic 2× 4, P = 8 nodes

p

q

for i = 1 . . .M − 1 do
for j = 1 . . .M − 1 do

for k = 1 . . .N − 1 do
Ci,j += Ai,k · Bk,j

(tiled, owner-computes)

Beaumont et. al Symmetric Block Cyclic Distribution 4 / 21

Matrix Multiplication, 2DBC, communication volume

A

B

M

M

N

GEneral Matrix Multiplication: C += A · B
on P nodes

2D Block Cyclic 2× 4, P = 8 nodes

p

q
for i = 1 . . .M − 1 do

for j = 1 . . .M − 1 do
for k = 1 . . .N − 1 do

Ci,j += Ai,k · Bk,j (tiled, owner-computes)

Distributed execution with a runtime system

Automatically builds the dependency graph from sequential code

Data is distributed on the nodes according to the distribution

Communications are managed seamlessly by the runtime system

Beaumont et. al Symmetric Block Cyclic Distribution 4 / 21

Matrix Multiplication, 2DBC, communication volume

A

B

M

M

N

GEneral Matrix Multiplication: C += A · B
on P nodes

2D Block Cyclic 2× 4, P = 8 nodes

p

q
for i = 1 . . .M − 1 do

for j = 1 . . .M − 1 do
for k = 1 . . .N − 1 do

Ci,j += Ai,k · Bk,j (tiled, owner-computes)

Distributed execution with a runtime system

Automatically builds the dependency graph from sequential code

Data is distributed on the nodes according to the distribution

Communications are managed seamlessly by the runtime system

Beaumont et. al Symmetric Block Cyclic Distribution 4 / 21

Matrix Multiplication, 2DBC, communication volume

A

B

M

M

N

GEneral Matrix Multiplication: C += A · B
on P nodes

2D Block Cyclic 2× 4, P = 8 nodes

p

q
for i = 1 . . .M − 1 do

for j = 1 . . .M − 1 do
for k = 1 . . .N − 1 do

Ci,j += Ai,k · Bk,j (tiled, owner-computes)

Distributed execution with a runtime system

Automatically builds the dependency graph from sequential code

Data is distributed on the nodes according to the distribution

Communications are managed seamlessly by the runtime system

Beaumont et. al Symmetric Block Cyclic Distribution 4 / 21

Matrix Multiplication, 2DBC, communication volume

A

B

M

M

N

GEneral Matrix Multiplication: C += A · B
on P nodes

2D Block Cyclic 2× 4, P = 8 nodes

p

q
for i = 1 . . .M − 1 do

for j = 1 . . .M − 1 do
for k = 1 . . .N − 1 do

Ci,j += Ai,k · Bk,j (tiled, owner-computes)

Communication volume: number of values communicated

Each tile of A is used by q nodes, each tile of B by p nodes.

V = MN(q − 1) +MN(p − 1) = MN(p + q − 2)

Beaumont et. al Symmetric Block Cyclic Distribution 4 / 21

2DBC, Arithmetic Intensity

Arithmetic Intensity: ρ = number of computations
communication volume

Total computations: 2M2N (N products and N additions per element of C)

ρ =
2M2N

MN(p + q − 2)

≃ 2M2N

2MN
√
P

=
M√
P

if p ≃ q ≃
√
P

S = number of elements of C per node =
M2

P

ρ =
√
S

This is optimal

Beaumont et. al Symmetric Block Cyclic Distribution 5 / 21

2DBC, Arithmetic Intensity

Arithmetic Intensity: ρ = number of computations
communication volume

Total computations: 2M2N (N products and N additions per element of C)

ρ =
2M2N

MN(p + q − 2)
≃ 2M2N

2MN
√
P

=
M√
P

if p ≃ q ≃
√
P

S = number of elements of C per node =
M2

P

ρ =
√
S

This is optimal

Beaumont et. al Symmetric Block Cyclic Distribution 5 / 21

2DBC, Arithmetic Intensity

Arithmetic Intensity: ρ = number of computations
communication volume

Total computations: 2M2N (N products and N additions per element of C)

ρ =
2M2N

MN(p + q − 2)
≃ 2M2N

2MN
√
P

=
M√
P

if p ≃ q ≃
√
P

S = number of elements of C per node =
M2

P

ρ =
√
S

This is optimal

Beaumont et. al Symmetric Block Cyclic Distribution 5 / 21

2DBC, Arithmetic Intensity

Arithmetic Intensity: ρ = number of computations
communication volume

Total computations: 2M2N (N products and N additions per element of C)

ρ =
2M2N

MN(p + q − 2)
≃ 2M2N

2MN
√
P

=
M√
P

if p ≃ q ≃
√
P

S = number of elements of C per node =
M2

P

ρ =
√
S

This is optimal

Beaumont et. al Symmetric Block Cyclic Distribution 5 / 21

Table of Contents

1 Introduction

2 Symmetric Distribution

3 Cholesky factorization

4 2.5D Cholesky implementation

5 Conclusions

Beaumont et. al Symmetric Block Cyclic Distribution 6 / 21

Symmetric multiplication is SYRK: C += A · AT

CA

AT

M

N

SYRK: C += A · AT (SYmmetric Rank-K update)

dominant part of Cholesky factorization

(solve A = L · LT for symmetric positive definite matrix A)

2D Block Cyclic 2× 4, P = 8 nodes

p

q

Communication volume

Each tile of A is used by p + q − 1 nodes: V = MN(p + q − 2)

Arithmetic Intensity: ρ =
M2N

2MN
√
P

=
M

2
√
P
, and since S =

M2

2P
now: ρ =

√
S√
2

Upper bound (tight):
√
2S [SPAA’2022]

Beaumont et. al Symmetric Block Cyclic Distribution 7 / 21

Symmetric multiplication is SYRK: C += A · AT

A

AT

M

N

SYRK: C += A · AT (SYmmetric Rank-K update)

dominant part of Cholesky factorization

(solve A = L · LT for symmetric positive definite matrix A)

2D Block Cyclic 2× 4, P = 8 nodes

p

q

Communication volume

Each tile of A is used by p + q − 1 nodes: V = MN(p + q − 2)

Arithmetic Intensity: ρ =
M2N

2MN
√
P

=
M

2
√
P
, and since S =

M2

2P
now: ρ =

√
S√
2

Upper bound (tight):
√
2S [SPAA’2022]

Beaumont et. al Symmetric Block Cyclic Distribution 7 / 21

Symmetric multiplication is SYRK: C += A · AT

A

AT

M

N

SYRK: C += A · AT (SYmmetric Rank-K update)

dominant part of Cholesky factorization

(solve A = L · LT for symmetric positive definite matrix A)

2D Block Cyclic 2× 4, P = 8 nodes

p

q

Communication volume

Each tile of A is used by p + q − 1 nodes: V = MN(p + q − 2)

Arithmetic Intensity: ρ =
M2N

2MN
√
P

=
M

2
√
P
, and since S =

M2

2P
now: ρ =

√
S√
2

Upper bound (tight):
√
2S [SPAA’2022]

Beaumont et. al Symmetric Block Cyclic Distribution 7 / 21

Symmetric multiplication is SYRK: C += A · AT

A

AT

M

N

SYRK: C += A · AT (SYmmetric Rank-K update)

dominant part of Cholesky factorization

(solve A = L · LT for symmetric positive definite matrix A)

2D Block Cyclic 2× 4, P = 8 nodes

p

q

Communication volume

Each tile of A is used by p + q − 1 nodes: V = MN(p + q − 2)

Arithmetic Intensity: ρ =
M2N

2MN
√
P

=
M

2
√
P
, and since S =

M2

2P
now: ρ =

√
S√
2

Upper bound (tight):
√
2S [SPAA’2022]

Beaumont et. al Symmetric Block Cyclic Distribution 7 / 21

Symmetric multiplication is SYRK: C += A · AT

A

AT

M

N

SYRK: C += A · AT (SYmmetric Rank-K update)

dominant part of Cholesky factorization

(solve A = L · LT for symmetric positive definite matrix A)

2D Block Cyclic 2× 4, P = 8 nodes

p

q

Communication volume

Each tile of A is used by p + q − 1 nodes: V = MN(p + q − 2)

Arithmetic Intensity: ρ =
M2N

2MN
√
P

=
M

2
√
P
, and since S =

M2

2P
now: ρ =

√
S√
2

Upper bound (tight):
√
2S [SPAA’2022]

Beaumont et. al Symmetric Block Cyclic Distribution 7 / 21

Symmetric multiplication is SYRK: C += A · AT

A

AT

M

N

SYRK: C += A · AT (SYmmetric Rank-K update)

dominant part of Cholesky factorization

(solve A = L · LT for symmetric positive definite matrix A)

2D Block Cyclic 2× 4, P = 8 nodes

p

q

Communication volume

Each tile of A is used by p + q − 1 nodes: V = MN(p + q − 2)

Arithmetic Intensity: ρ =
M2N

2MN
√
P

=
M

2
√
P
, and since S =

M2

2P
now: ρ =

√
S√
2

Upper bound (tight):
√
2S [SPAA’2022]

Beaumont et. al Symmetric Block Cyclic Distribution 7 / 21

Symmetric multiplication is SYRK: C += A · AT

A

AT

M

N

SYRK: C += A · AT (SYmmetric Rank-K update)

dominant part of Cholesky factorization

(solve A = L · LT for symmetric positive definite matrix A)

2D Block Cyclic 2× 4, P = 8 nodes

p

q

Communication volume

Each tile of A is used by p + q − 1 nodes: V = MN(p + q − 2)

Arithmetic Intensity: ρ =
M2N

2MN
√
P

=
M

2
√
P
, and since S =

M2

2P
now: ρ =

√
S√
2

Upper bound (tight):
√
2S [SPAA’2022]

Beaumont et. al Symmetric Block Cyclic Distribution 7 / 21

Symmetric multiplication is SYRK: C += A · AT

A

AT

M

N

SYRK: C += A · AT (SYmmetric Rank-K update)

dominant part of Cholesky factorization

(solve A = L · LT for symmetric positive definite matrix A)

2D Block Cyclic 2× 4, P = 8 nodes

p

q

Communication volume

Each tile of A is used by p + q − 1 nodes: V = MN(p + q − 2)

Arithmetic Intensity: ρ =
M2N

2MN
√
P

=
M

2
√
P
, and since S =

M2

2P
now: ρ =

√
S√
2

Upper bound (tight):
√
2S [SPAA’2022]

Beaumont et. al Symmetric Block Cyclic Distribution 7 / 21

Symmetric multiplication is SYRK: C += A · AT

A

AT

M

N

SYRK: C += A · AT (SYmmetric Rank-K update)

dominant part of Cholesky factorization

(solve A = L · LT for symmetric positive definite matrix A)

2D Block Cyclic 2× 4, P = 8 nodes

p

q

Communication volume

Each tile of A is used by p + q − 1 nodes: V = MN(p + q − 2)

Arithmetic Intensity: ρ =
M2N

2MN
√
P

=
M

2
√
P
, and since S =

M2

2P
now: ρ =

√
S√
2

Upper bound (tight):
√
2S [SPAA’2022]

Beaumont et. al Symmetric Block Cyclic Distribution 7 / 21

Symmetric multiplication is SYRK: C += A · AT

A

AT

M

N

SYRK: C += A · AT (SYmmetric Rank-K update)

dominant part of Cholesky factorization

(solve A = L · LT for symmetric positive definite matrix A)

2D Block Cyclic 2× 4, P = 8 nodes

p

q

Communication volume

Each tile of A is used by p + q − 1 nodes: V = MN(p + q − 2)

Arithmetic Intensity: ρ =
M2N

2MN
√
P

=
M

2
√
P
, and since S =

M2

2P
now: ρ =

√
S√
2

Upper bound (tight):
√
2S [SPAA’2022]

Beaumont et. al Symmetric Block Cyclic Distribution 7 / 21

SBC: Symmetric Block Cyclic – basic version

A

AT

M

N

7
8

7
8

1
2 3
4 5 6
7

8
7

8

1
2 3
4 5 6

7
8

7
8

1
2 3
4 5 6

1 2
3

4
5
6

Goal: same nodes on rows and columns

Symmetric Block Cyclic P = 8

7
8

7
8

1
2 3
4 5 6

1 2
3

4
5
6

r

r

P = r2

2 ⇔ r =
√
2P

Communication volume

One tile of A is needed by r nodes: V = MN(r − 1)

Arithmetic intensity: ρ =
M2N

MN(r − 1)
=

M√
2P

=
√
S

Beaumont et. al Symmetric Block Cyclic Distribution 8 / 21

SBC: Symmetric Block Cyclic – basic version

A

AT

M

N

7
8

7
8

1
2 3
4 5 6
7

8
7

8

1
2 3
4 5 6

7
8

7
8

1
2 3
4 5 6

1 2
3

4
5
6

Goal: same nodes on rows and columns

Symmetric Block Cyclic P = 8

7
8

7
8

1
2 3
4 5 6

1 2
3

4
5
6

r

r

P = r2

2 ⇔ r =
√
2P

Communication volume

One tile of A is needed by r nodes: V = MN(r − 1)

Arithmetic intensity: ρ =
M2N

MN(r − 1)
=

M√
2P

=
√
S

Beaumont et. al Symmetric Block Cyclic Distribution 8 / 21

SBC: Symmetric Block Cyclic – basic version

A

AT

M

N

7
8

7
8

1
2 3
4 5 6
7

8
7

8

1
2 3
4 5 6

7
8

7
8

1
2 3
4 5 6

1 2
3

4
5
6

Goal: same nodes on rows and columns

Symmetric Block Cyclic P = 8

7
8

7
8

1
2 3
4 5 6

1 2
3

4
5
6

r

r

P = r2

2 ⇔ r =
√
2P

Communication volume

One tile of A is needed by r nodes: V = MN(r − 1)

Arithmetic intensity: ρ =
M2N

MN(r − 1)
=

M√
2P

=
√
S

Beaumont et. al Symmetric Block Cyclic Distribution 8 / 21

SBC: Symmetric Block Cyclic – basic version

A

AT

M

N

7
8

7
8

1
2 3
4 5 6
7

8
7

8

1
2 3
4 5 6

7
8

7
8

1
2 3
4 5 6

1 2
3

4
5
6

Goal: same nodes on rows and columns

Symmetric Block Cyclic P = 8
7

8
7

8

1
2 3
4 5 6

1 2
3

4
5
6

r

r

P = r2

2 ⇔ r =
√
2P

Communication volume

One tile of A is needed by r nodes: V = MN(r − 1)

Arithmetic intensity: ρ =
M2N

MN(r − 1)
=

M√
2P

=
√
S

Beaumont et. al Symmetric Block Cyclic Distribution 8 / 21

SBC: Symmetric Block Cyclic – basic version

A

AT

M

N

7
8

7
8

1
2 3
4 5 6
7

8
7

8

1
2 3
4 5 6

7
8

7
8

1
2 3
4 5 6

1 2
3

4
5
6

Goal: same nodes on rows and columns

Symmetric Block Cyclic P = 8
7

8
7

8

1
2 3
4 5 6

1 2
3

4
5
6

r

r

P = r2

2 ⇔ r =
√
2P

Communication volume

One tile of A is needed by r nodes: V = MN(r − 1)

Arithmetic intensity: ρ =
M2N

MN(r − 1)
=

M√
2P

=
√
S

Beaumont et. al Symmetric Block Cyclic Distribution 8 / 21

SBC: Symmetric Block Cyclic – basic version

A

AT

M

N

7
8

7
8

1
2 3
4 5 6
7

8
7

8

1
2 3
4 5 6

7
8

7
8

1
2 3
4 5 6

1 2
3

4
5
6

Goal: same nodes on rows and columns

Symmetric Block Cyclic P = 8
7

8
7

8

1
2 3
4 5 6

1 2
3

4
5
6

r

r

P = r2

2 ⇔ r =
√
2P

Communication volume

One tile of A is needed by r nodes: V = MN(r − 1)

Arithmetic intensity: ρ =
M2N

MN(r − 1)
=

M√
2P

=
√
S

Beaumont et. al Symmetric Block Cyclic Distribution 8 / 21

SBC: Symmetric Block Cyclic – basic version

A

AT

M

N

7
8

7
8

1
2 3
4 5 6
7

8
7

8

1
2 3
4 5 6

7
8

7
8

1
2 3
4 5 6

1 2
3

4
5
6

Goal: same nodes on rows and columns

Symmetric Block Cyclic P = 8
7

8
7

8

1
2 3
4 5 6

1 2
3

4
5
6

r

r

P = r2

2 ⇔ r =
√
2P

Communication volume

One tile of A is needed by r nodes: V = MN(r − 1)

Arithmetic intensity: ρ =
M2N

MN(r − 1)
=

M√
2P

=
√
S

Beaumont et. al Symmetric Block Cyclic Distribution 8 / 21

SBC: Extended version

Limitations of basic version

not valid for odd values of r ;

only a small subset of nodes on the diagonal of A.

Alternative way of allocating diagonal tiles of the SBC pattern

Keep the set of r(r−1)
2 nodes, reuse them on the diagonal

Create several patterns, alternate between them on matrix A.

1

2 3

4 5 6

7 8 9 10

1 2

3

4

5

6

7

8

9

10

Generic pattern

1

2 3

4 5 6

7 8 9 10

1 2

3

4

5

6

7

8

9

10

Pattern 1

1

3

6

10

7

1

2 3

4 5 6

7 8 9 10

1 2

3

4

5

6

7

8

9

10

Pattern 2

2

5

9

4

8

Create r−1
2 patterns for odd r

Create r − 1 patterns for even r

Beaumont et. al Symmetric Block Cyclic Distribution 9 / 21

SBC: Extended version

Limitations of basic version

not valid for odd values of r ;

only a small subset of nodes on the diagonal of A.

Alternative way of allocating diagonal tiles of the SBC pattern

Keep the set of r(r−1)
2 nodes, reuse them on the diagonal

Create several patterns, alternate between them on matrix A.

1

2 3

4 5 6

7 8 9 10

1 2

3

4

5

6

7

8

9

10

Generic pattern

1

2 3

4 5 6

7 8 9 10

1 2

3

4

5

6

7

8

9

10

Pattern 1

1

3

6

10

7

1

2 3

4 5 6

7 8 9 10

1 2

3

4

5

6

7

8

9

10

Pattern 2

2

5

9

4

8

Create r−1
2 patterns for odd r

Create r − 1 patterns for even r

Beaumont et. al Symmetric Block Cyclic Distribution 9 / 21

SBC: Extended version

Limitations of basic version

not valid for odd values of r ;

only a small subset of nodes on the diagonal of A.

Alternative way of allocating diagonal tiles of the SBC pattern

Keep the set of r(r−1)
2 nodes, reuse them on the diagonal

Create several patterns, alternate between them on matrix A.

1

2 3

4 5 6

7 8 9 10

1 2

3

4

5

6

7

8

9

10

Generic pattern

1

2 3

4 5 6

7 8 9 10

1 2

3

4

5

6

7

8

9

10

Pattern 1

1

3

6

10

7

1

2 3

4 5 6

7 8 9 10

1 2

3

4

5

6

7

8

9

10

Pattern 2

2

5

9

4

8

Create r−1
2 patterns for odd r

Create r − 1 patterns for even r

Beaumont et. al Symmetric Block Cyclic Distribution 9 / 21

SBC: Extended version

Limitations of basic version

not valid for odd values of r ;

only a small subset of nodes on the diagonal of A.

Alternative way of allocating diagonal tiles of the SBC pattern

Keep the set of r(r−1)
2 nodes, reuse them on the diagonal

Create several patterns, alternate between them on matrix A.

1

2 3

4 5 6

7 8 9 10

1 2

3

4

5

6

7

8

9

10

Generic pattern

1

2 3

4 5 6

7 8 9 10

1 2

3

4

5

6

7

8

9

10

Pattern 1

1

3

6

10

7

1

2 3

4 5 6

7 8 9 10

1 2

3

4

5

6

7

8

9

10

Pattern 2

2

5

9

4

8

Create r−1
2 patterns for odd r

Create r − 1 patterns for even r

Beaumont et. al Symmetric Block Cyclic Distribution 9 / 21

SBC: Extended version

Limitations of basic version

not valid for odd values of r ;

only a small subset of nodes on the diagonal of A.

Alternative way of allocating diagonal tiles of the SBC pattern

Keep the set of r(r−1)
2 nodes, reuse them on the diagonal

Create several patterns, alternate between them on matrix A.

1

2 3

4 5 6

7 8 9 10

1 2

3

4

5

6

7

8

9

10

Generic pattern

1

2 3

4 5 6

7 8 9 10

1 2

3

4

5

6

7

8

9

10

Pattern 1

1

3

6

10

7

1

2 3

4 5 6

7 8 9 10

1 2

3

4

5

6

7

8

9

10

Pattern 2

2

5

9

4

8

Create r−1
2 patterns for odd r

Create r − 1 patterns for even r

Beaumont et. al Symmetric Block Cyclic Distribution 9 / 21

SBC: Extended version

Limitations of basic version

not valid for odd values of r ;

only a small subset of nodes on the diagonal of A.

Alternative way of allocating diagonal tiles of the SBC pattern

Keep the set of r(r−1)
2 nodes, reuse them on the diagonal

Create several patterns, alternate between them on matrix A.

1

2 3

4 5 6

7 8 9 10

1 2

3

4

5

6

7

8

9

10

Generic pattern

1

2 3

4 5 6

7 8 9 10

1 2

3

4

5

6

7

8

9

10

Pattern 1

1

3

6

10

7

1

2 3

4 5 6

7 8 9 10

1 2

3

4

5

6

7

8

9

10

Pattern 2

2

5

9

4

8

Create r−1
2 patterns for odd r

Create r − 1 patterns for even r

Beaumont et. al Symmetric Block Cyclic Distribution 9 / 21

SBC: Extended version

Limitations of basic version

not valid for odd values of r ;

only a small subset of nodes on the diagonal of A.

Alternative way of allocating diagonal tiles of the SBC pattern

Keep the set of r(r−1)
2 nodes, reuse them on the diagonal

Create several patterns, alternate between them on matrix A.

1

2 3

4 5 6

7 8 9 10

1 2

3

4

5

6

7

8

9

10

Generic pattern

1

2 3

4 5 6

7 8 9 10

1 2

3

4

5

6

7

8

9

10

Pattern 1

1

3

6

10

7

1

2 3

4 5 6

7 8 9 10

1 2

3

4

5

6

7

8

9

10

Pattern 2

2

5

9

4

8

Create r−1
2 patterns for odd r

Create r − 1 patterns for even r

Beaumont et. al Symmetric Block Cyclic Distribution 9 / 21

SBC: Extended version

Limitations of basic version

not valid for odd values of r ;

only a small subset of nodes on the diagonal of A.

Alternative way of allocating diagonal tiles of the SBC pattern

Keep the set of r(r−1)
2 nodes, reuse them on the diagonal

Create several patterns, alternate between them on matrix A.

1

2 3

4 5 6

7 8 9 10

1 2

3

4

5

6

7

8

9

10

Generic pattern

1

2 3

4 5 6

7 8 9 10

1 2

3

4

5

6

7

8

9

10

Pattern 1

1

3

6

10

7

1

2 3

4 5 6

7 8 9 10

1 2

3

4

5

6

7

8

9

10

Pattern 2

2

5

9

4

8

Create r−1
2 patterns for odd r

Create r − 1 patterns for even r

Beaumont et. al Symmetric Block Cyclic Distribution 9 / 21

Table of Contents

1 Introduction

2 Symmetric Distribution

3 Cholesky factorization

4 2.5D Cholesky implementation

5 Conclusions

Beaumont et. al Symmetric Block Cyclic Distribution 10 / 21

Task-based Cholesky – solve A = L · LT for SPD matrix A

for i = 1 . . .N − 1 do
Ai,i ← POTRF(Ai,i)
for j = i + 1 . . .N − 1 do

Aj,i ← TRSM(Aj,i , Ai,i)

for k = i + 1 . . .N − 1 do
Ak,k ← SYRK(Ak,k , Ak,i)
for j = k + 1 . . .N − 1 do

Aj,k ← GEMM(Aj,k , Aj,i , Ak,i)

Right-looking Cholesky is mainly iterated SYRK

One iteration: factorize panel, update trailing matrix (SYRK)

Typical MPI-based implementations synchronize between iterations

Task-based allows for large lookahead and thus more parallelism

Automatic handling of communications: easy to change the data allocation

Beaumont et. al Symmetric Block Cyclic Distribution 11 / 21

Task-based Cholesky – solve A = L · LT for SPD matrix A

for i = 1 . . .N − 1 do
Ai,i ← POTRF(Ai,i)
for j = i + 1 . . .N − 1 do

Aj,i ← TRSM(Aj,i , Ai,i)

for k = i + 1 . . .N − 1 do
Ak,k ← SYRK(Ak,k , Ak,i)
for j = k + 1 . . .N − 1 do

Aj,k ← GEMM(Aj,k , Aj,i , Ak,i)

Right-looking Cholesky is mainly iterated SYRK

One iteration: factorize panel, update trailing matrix (SYRK)

Typical MPI-based implementations synchronize between iterations

Task-based allows for large lookahead and thus more parallelism

Automatic handling of communications: easy to change the data allocation

Beaumont et. al Symmetric Block Cyclic Distribution 11 / 21

Task-based Cholesky – solve A = L · LT for SPD matrix A

for i = 1 . . .N − 1 do
Ai,i ← POTRF(Ai,i)
for j = i + 1 . . .N − 1 do

Aj,i ← TRSM(Aj,i , Ai,i)

for k = i + 1 . . .N − 1 do
Ak,k ← SYRK(Ak,k , Ak,i)
for j = k + 1 . . .N − 1 do

Aj,k ← GEMM(Aj,k , Aj,i , Ak,i)

Right-looking Cholesky is mainly iterated SYRK

One iteration: factorize panel, update trailing matrix (SYRK)

Typical MPI-based implementations synchronize between iterations

Task-based allows for large lookahead and thus more parallelism

Automatic handling of communications: easy to change the data allocation

Beaumont et. al Symmetric Block Cyclic Distribution 11 / 21

Task-based Cholesky – solve A = L · LT for SPD matrix A

for i = 1 . . .N − 1 do
Ai,i ← POTRF(Ai,i)
for j = i + 1 . . .N − 1 do

Aj,i ← TRSM(Aj,i , Ai,i)

for k = i + 1 . . .N − 1 do
Ak,k ← SYRK(Ak,k , Ak,i)
for j = k + 1 . . .N − 1 do

Aj,k ← GEMM(Aj,k , Aj,i , Ak,i)

Right-looking Cholesky is mainly iterated SYRK

One iteration: factorize panel, update trailing matrix (SYRK)

Typical MPI-based implementations synchronize between iterations

Task-based allows for large lookahead and thus more parallelism

Automatic handling of communications: easy to change the data allocation

Beaumont et. al Symmetric Block Cyclic Distribution 11 / 21

Task-based Cholesky – solve A = L · LT for SPD matrix A

for i = 1 . . .N − 1 do
Ai,i ← POTRF(Ai,i)
for j = i + 1 . . .N − 1 do

Aj,i ← TRSM(Aj,i , Ai,i)

for k = i + 1 . . .N − 1 do
Ak,k ← SYRK(Ak,k , Ak,i)
for j = k + 1 . . .N − 1 do

Aj,k ← GEMM(Aj,k , Aj,i , Ak,i)

Right-looking Cholesky is mainly iterated SYRK

One iteration: factorize panel, update trailing matrix (SYRK)

Typical MPI-based implementations synchronize between iterations

Task-based allows for large lookahead and thus more parallelism

Automatic handling of communications: easy to change the data allocation

Beaumont et. al Symmetric Block Cyclic Distribution 11 / 21

Task-based Cholesky – solve A = L · LT for SPD matrix A

for i = 1 . . .N − 1 do
Ai,i ← POTRF(Ai,i)
for j = i + 1 . . .N − 1 do

Aj,i ← TRSM(Aj,i , Ai,i)

for k = i + 1 . . .N − 1 do
Ak,k ← SYRK(Ak,k , Ak,i)
for j = k + 1 . . .N − 1 do

Aj,k ← GEMM(Aj,k , Aj,i , Ak,i)

Right-looking Cholesky is mainly iterated SYRK

One iteration: factorize panel, update trailing matrix (SYRK)

Typical MPI-based implementations synchronize between iterations

Task-based allows for large lookahead and thus more parallelism

Automatic handling of communications: easy to change the data allocation

Beaumont et. al Symmetric Block Cyclic Distribution 11 / 21

Task-based Cholesky – solve A = L · LT for SPD matrix A

for i = 1 . . .N − 1 do
Ai,i ← POTRF(Ai,i)
for j = i + 1 . . .N − 1 do

Aj,i ← TRSM(Aj,i , Ai,i)

for k = i + 1 . . .N − 1 do
Ak,k ← SYRK(Ak,k , Ak,i)
for j = k + 1 . . .N − 1 do

Aj,k ← GEMM(Aj,k , Aj,i , Ak,i)

Right-looking Cholesky is mainly iterated SYRK

One iteration: factorize panel, update trailing matrix (SYRK)

Typical MPI-based implementations synchronize between iterations

Task-based allows for large lookahead and thus more parallelism

Automatic handling of communications: easy to change the data allocation

Beaumont et. al Symmetric Block Cyclic Distribution 11 / 21

Task-based Cholesky – solve A = L · LT for SPD matrix A

for i = 1 . . .N − 1 do
Ai,i ← POTRF(Ai,i)
for j = i + 1 . . .N − 1 do

Aj,i ← TRSM(Aj,i , Ai,i)

for k = i + 1 . . .N − 1 do
Ak,k ← SYRK(Ak,k , Ak,i)
for j = k + 1 . . .N − 1 do

Aj,k ← GEMM(Aj,k , Aj,i , Ak,i)

Right-looking Cholesky is mainly iterated SYRK

One iteration: factorize panel, update trailing matrix (SYRK)

Typical MPI-based implementations synchronize between iterations

Task-based allows for large lookahead and thus more parallelism

Automatic handling of communications: easy to change the data allocation

Beaumont et. al Symmetric Block Cyclic Distribution 11 / 21

Task-based Cholesky – solve A = L · LT for SPD matrix A

Right-looking Cholesky is mainly iterated SYRK

One iteration: factorize panel, update trailing matrix (SYRK)

Typical MPI-based implementations synchronize between iterations

Task-based allows for large lookahead and thus more parallelism

Automatic handling of communications: easy to change the data allocation

Beaumont et. al Symmetric Block Cyclic Distribution 11 / 21

Task-based Cholesky – solve A = L · LT for SPD matrix A

Right-looking Cholesky is mainly iterated SYRK

One iteration: factorize panel, update trailing matrix (SYRK)

Typical MPI-based implementations synchronize between iterations

Task-based allows for large lookahead and thus more parallelism

Automatic handling of communications: easy to change the data allocation

Beaumont et. al Symmetric Block Cyclic Distribution 11 / 21

Task-based Cholesky – solve A = L · LT for SPD matrix A

Right-looking Cholesky is mainly iterated SYRK

One iteration: factorize panel, update trailing matrix (SYRK)

Typical MPI-based implementations synchronize between iterations

Task-based allows for large lookahead and thus more parallelism

Automatic handling of communications: easy to change the data allocation

Beaumont et. al Symmetric Block Cyclic Distribution 11 / 21

Task-based Cholesky – solve A = L · LT for SPD matrix A

Right-looking Cholesky is mainly iterated SYRK

One iteration: factorize panel, update trailing matrix (SYRK)

Typical MPI-based implementations synchronize between iterations

Task-based allows for large lookahead and thus more parallelism

Automatic handling of communications: easy to change the data allocation

Beaumont et. al Symmetric Block Cyclic Distribution 11 / 21

Task-based Cholesky – solve A = L · LT for SPD matrix A

Right-looking Cholesky is mainly iterated SYRK

One iteration: factorize panel, update trailing matrix (SYRK)

Typical MPI-based implementations synchronize between iterations

Task-based allows for large lookahead and thus more parallelism

Automatic handling of communications: easy to change the data allocation

Beaumont et. al Symmetric Block Cyclic Distribution 11 / 21

Experimental results

Experimental setting

bora nodes of PlaFRIM, Bordeaux:
• 42 nodes, Intel Xeon Skylake Gold 6240, 36 cores per node
• 100Gb/s OmniPath network

chameleon library, based on starpu runtime

Intel MKL 2020, Open MPI version 4.0.3

One starpu process per node, each task executed on one core

One core reserved for handling MPI comms, one for task submission & scheduling

tile size b = 500

Beaumont et. al Symmetric Block Cyclic Distribution 12 / 21

Experimental results: Cholesky factorization on P ∼ 28 nodes

Chameleon+StarPU on bora cluster (36 cores per node: 1008 cores)

Theoretical peaks

(34 and 36 cores)

G
F

lo
p/

s
/ n

od
e

0e+00 1e+05 2e+05 3e+05

0

500

1000

1500

Matrix size

Mapping
2DBC
(P=28, pxq=7x4)

2DBC
(P=30, pxq=6x5)

SBC
(P=28, r=8)

Beaumont et. al Symmetric Block Cyclic Distribution 13 / 21

Table of Contents

1 Introduction

2 Symmetric Distribution

3 Cholesky factorization

4 2.5D Cholesky implementation

5 Conclusions

Beaumont et. al Symmetric Block Cyclic Distribution 14 / 21

2.5D Cholesky implementation

Main ideas

Replicate the matrix on c slices of nodes

Perform iteration k on slice k mod c : updates of a tile accumulate on c nodes

Reduce operation at the end to merge all updates

Task-based implentation: high lookahead avoids idle time

Beaumont et. al Symmetric Block Cyclic Distribution 15 / 21

2.5D Cholesky implementation

Main ideas

Replicate the matrix on c slices of nodes

Perform iteration k on slice k mod c : updates of a tile accumulate on c nodes

Reduce operation at the end to merge all updates

Task-based implentation: high lookahead avoids idle time

Beaumont et. al Symmetric Block Cyclic Distribution 15 / 21

2.5D Cholesky implementation

Main ideas

Replicate the matrix on c slices of nodes

Perform iteration k on slice k mod c : updates of a tile accumulate on c nodes

Reduce operation at the end to merge all updates

Task-based implentation: high lookahead avoids idle time

Beaumont et. al Symmetric Block Cyclic Distribution 15 / 21

2.5D Cholesky: communication volume

Can be used with any 2D distribution, reproduced on c slices. P
c nodes per slice

Communication volume:
• 2DBC: M2(2

√
P
c + c − 1) SBC: M2(

√
2P
c + c − 1)

With limited memory S

Use as many slices as possible: c = 2PS
M2

Communication volume: V =
1

2

M3

√
S

+ o(M3) [Kwasniewki et al, SC’21]: V ∼ 1 · M
3

√
S

With large memory

Select the value of c to minimize the communication volume

For SBC, we obtain c ∼ 3
√
P/2 and r = 2c , so that V ∼ 3 3

√
1/2 · S 3

√
P

With 2DBC, c ∼ 3
√
P and V ∼ 3 · S 3

√
P : factor 3

√
2 ≃ 1.26 on comms and memory

Beaumont et. al Symmetric Block Cyclic Distribution 16 / 21

2.5D version: experimental results (c = 3)

Theoretical peaks

(34 and 36 cores)

G
F

lo
p/

s
/ n

od
e

0e+00 1e+05 2e+05 3e+05

0

500

1000

1500

Matrix size

Mapping
2DBC
(P=28, pxq=7x4)

2DBC
(P=30, pxq=6x5)

2DBC
(P=32, pxq=8x4)

SBC
(P=28, r=8)

2DBC 2.5D
(P=30, pxq=5x2, c=3)

SBC 2.5D
(P=30, r=5, c=3)

Library

Chameleon−StarPU

COnfCHOX

Beaumont et. al Symmetric Block Cyclic Distribution 17 / 21

Table of Contents

1 Introduction

2 Symmetric Distribution

3 Cholesky factorization

4 2.5D Cholesky implementation

5 Conclusions

Beaumont et. al Symmetric Block Cyclic Distribution 18 / 21

Conclusions

Contributions

New Symmetric Block Cyclic distribution, adapted for SYRK & Cholesky

Lowers communication volume by a factor of
√
2

Task-based 2.5D implementation of Cholesky factorization

Significantly improved performance and scalability

Can be applied to many other symmetric computations

Open questions

SBC: each node appears twice. Would higher counts improve the performance further?

Efficiency of 2.5D for Matrix Multiplication:
• In Cholesky, some reductions start very early ⇒ overlap with computations
• For GEMM/SYRK, same amount of work on all tiles: how to organize the reductions?

Beaumont et. al Symmetric Block Cyclic Distribution 19 / 21

Ongoing work: recent results (under evaluation)

Optimal TBC distribution

Based on the TBS sequential algorithm from [SPAA’2022]

Used in the context of the SYMM operation

Also improves the performance of Cholesky

●●
●●
●●
●
●●●

●●
●●
●●●

●●
●●●

●●
●●●

●●●
●●●

●●
●●●●

●●●
●●●●

●●●
●●●●

●●●●
●●●●

●●●
●●●●●

●●●●
●●●●●

●●●●
●●●●●

●●●●●
●●●●●

●●●●
●●●●●

●●●●●
●●●●●

●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●●
●●●●●●

●●●●●●●
●●●●●

3P 2

2P
2 P − 1

10

20

30

0 50 100 150 200
Number of nodes

P
at

te
rn

 c
os

t

Pattern ●2DBC G−2DBC GCRM SBC

Distributions for any value of P

2DBC and SBC only efficient for specific values of P

Proposed Generalized 2DBC for non-symmetric case

Proposed greedy GCR&M for symmetric case

Beaumont et. al Symmetric Block Cyclic Distribution 20 / 21

Ongoing work: recent results (under evaluation)

Optimal TBC distribution

Based on the TBS sequential algorithm from [SPAA’2022]

Used in the context of the SYMM operation

Also improves the performance of Cholesky

G
F

lo
p/

s
/ n

od
e

0e+00 1e+05 2e+05 3e+05

0

500

1000

1500

Matrix size

Mapping
2DBC
(P=28, pxq=7x4)

2DBC
(P=30, pxq=6x5)

SBC
(P=28, r=8)

TBC
(P=30, r=5)

●●
●●
●●
●
●●●

●●
●●
●●●

●●
●●●

●●
●●●

●●●
●●●

●●
●●●●

●●●
●●●●

●●●
●●●●

●●●●
●●●●

●●●
●●●●●

●●●●
●●●●●

●●●●
●●●●●

●●●●●
●●●●●

●●●●
●●●●●

●●●●●
●●●●●

●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●●
●●●●●●

●●●●●●●
●●●●●

3P 2

2P
2 P − 1

10

20

30

0 50 100 150 200
Number of nodes

P
at

te
rn

 c
os

t

Pattern ●2DBC G−2DBC GCRM SBC

Distributions for any value of P

2DBC and SBC only efficient for specific values of P

Proposed Generalized 2DBC for non-symmetric case

Proposed greedy GCR&M for symmetric case

Beaumont et. al Symmetric Block Cyclic Distribution 20 / 21

Ongoing work: recent results (under evaluation)

Optimal TBC distribution

Based on the TBS sequential algorithm from [SPAA’2022]

Used in the context of the SYMM operation

Also improves the performance of Cholesky

G
F

lo
p/

s
/ n

od
e

0e+00 1e+05 2e+05 3e+05

0

500

1000

1500

Matrix size

Mapping
2DBC
(P=28, pxq=7x4)

2DBC
(P=30, pxq=6x5)

SBC
(P=28, r=8)

TBC
(P=30, r=5)

●●
●●
●●
●
●●●

●●
●●
●●●

●●
●●●

●●
●●●

●●●
●●●

●●
●●●●

●●●
●●●●

●●●
●●●●

●●●●
●●●●

●●●
●●●●●

●●●●
●●●●●

●●●●
●●●●●

●●●●●
●●●●●

●●●●
●●●●●

●●●●●
●●●●●

●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●●
●●●●●●

●●●●●●●
●●●●●

3P 2

2P
2 P − 1

10

20

30

0 50 100 150 200
Number of nodes

P
at

te
rn

 c
os

t

Pattern ●2DBC G−2DBC GCRM SBC

Distributions for any value of P

2DBC and SBC only efficient for specific values of P

Proposed Generalized 2DBC for non-symmetric case

Proposed greedy GCR&M for symmetric case

Beaumont et. al Symmetric Block Cyclic Distribution 20 / 21

SC22 | Dallas, TX | hpc accelerates.

Thank you !

Questions?

https://solverstack.gitlabpages.inria.fr/chameleon/

https://solverstack.gitlabpages.inria.fr/chameleon/

	Introduction
	Symmetric Distribution
	Cholesky factorization
	2.5D Cholesky implementation
	Conclusions

