Symmetric Block-Cyclic Distribution:
Fewer Communications Leads to
Faster Dense Cholesky Factorization

Olivier Beaumont, Philippe Duchon,
Lionel Eyraud-Dubois, Julien Langou, Mathieu Vérité

LaBRI, Inria Center at the University of- Bordeaux
University of Colorado, Denver

7 niversite
lrrzia — LCIBRI YN EORDEAUX

S22

Table of Contents

@ Introduction

Beaumont et. al Symmetric Block Cyclic Distribution 2/21

Context

Data placement for Linear Algebra operations

m Linear Algebra is everywhere in Scientific Computing
® Solving Partial Differential Equations becomes Ax = b after discretization

Very computationally intensive: distributed execution necessary

Tightly coupled: importance of minimizing communications

m Objective: reduce the total volume of communications

Focus on symmetric operations: SYRK (C += A- AT), Cholesky

Propose a Symmetric Block Cyclic distribution, improves over the standard 2DBC

Propose a 2.5D variant of a task-based implementation of Cholesky factorization

Provide an experimental validation with significantly improved performance

Beaumont et. al Symmetric Block Cyclic Distribution 3/21

Matrix Multiplication, 2DBC, communication volume

v o Multiolicati
I GEneral Matrix Multiplication: C +=A- B

«— «—— M on P nodes

MIIA C fori=1...M—1 do
for j=1...M—1 do

for k=1...N—-1 do
Cij+=Aik By,

Beaumont et. al Symmetric Block Cyclic Distribution 4/21

Matrix Multiplication, 2DBC, communication volume

N I 2D Block Cyclic 2 x 4, P = 8 nodes

= s ¥ o[HEH
—>
q
Ml A for i=1...M—1 do
for j=1...M—1 do
for k=1...N—1 do
C;j += A, - By (tiled, owner-computes)

Distributed execution with a runtime system

m Automatically builds the dependency graph from sequential code
m Data is distributed on the nodes according to the distribution

m Communications are managed seamlessly by the runtime system

Beaumont et. al Symmetric Block Cyclic Distribution 4/21

Matrix Multiplication, 2DBC, communication volume

N I 2D Block Cyclic 2 x 4, P = 8 nodes

= s ¥ o] HEE
| —_—
q
MITA for i=1...M—1 do
for j=1...M—1 do
for k=1...N—1 do
C;j += A, - By (tiled, owner-computes)

Distributed execution with a runtime system

m Automatically builds the dependency graph from sequential code
m Data is distributed on the nodes according to the distribution

m Communications are managed seamlessly by the runtime system

Beaumont et. al Symmetric Block Cyclic Distribution 4/21

Matrix Multiplication, 2DBC, communication volume

N I_ 2D Block Cyclic 2 x 4, P = 8 nodes
s un
—>

fori=1...M—1 do
for j=1...M—1 do
for k=1...N—1 do
C;j += A, - By (tiled, owner-computes)

Distributed execution with a runtime system

m Automatically builds the dependency graph from sequential code
m Data is distributed on the nodes according to the distribution

m Communications are managed seamlessly by the runtime system

Beaumont et. al Symmetric Block Cyclic Distribution 4/21

Matrix Multiplication, 2DBC, communication volume

y |
I 2D Block Cyclic 2 x 4, P = 8 nodes
M
p
IF

fori=1...M—1 do
for j=1...M—1 do
for k=1...N—1 do
C;j += A, - By (tiled, owner-computes)

Communication volume: number of values communicated

Each tile of A is used by g nodes, each tile of B by p nodes.

V =MN(q—1)+ MN(p—1) = MN(p+q—2)

Beaumont et. al Symmetric Block Cyclic Distribution 4/21

2DBC, Arithmetic Intensity

number of computations
communication volume

Arithmetic Intensity: p =

m Total computations: 2M2N (N products and N additions per element of C)

2M2N

P= MNGp+q-2)

Beaumont et. al Symmetric Block Cyclic Distribution 5/21

2DBC, Arithmetic Intensity

number of computations
communication volume

Arithmetic Intensity: p =

m Total computations: 2M2N (N products and N additions per element of C)

 2MPN 2MPN M
MN(p+q—2) 2MNVP /P

P if p~ g~ VP

Beaumont et. al Symmetric Block Cyclic Distribution 5/21

2DBC, Arithmetic Intensity

number of computations
communication volume

Arithmetic Intensity: p =

m Total computations: 2M2N (N products and N additions per element of C)

2M2N 2M2N M

P=MNp+q-2) amnve P P17
MZ
B S = number of elements of C per node = 3
p=VS

Beaumont et. al Symmetric Block Cyclic Distribution 5/21

2DBC, Arithmetic Intensity

number of computations
communication volume

Arithmetic Intensity: p =

m Total computations: 2M2N (N products and N additions per element of C)

2M2N 2M2N M

P=MNp+q-2) amnve P P17
MZ
B S = number of elements of C per node = 3
p=VS

m This is optimal

Beaumont et. al Symmetric Block Cyclic Distribution 5/21

Table of Contents

@ Symmetric Distribution

Beaumont et. al Symmetric Block Cyclic Distribution 6/21

Symmetric multiplication is SYRK: C += A - AT

v 2R

“— — > M

Beaumont et. al

SYRK: C += A- AT (SYmmetric Rank-K update)

dominant part of Cholesky factorization

(solve A= L - LT for symmetric positive definite matrix A)

Symmetric Block Cyclic Distribution

7/21

Symmetric multiplication is SYRK: C += A - AT

vl A
“— — > M

Beaumont et. al

SYRK: C += A- AT (SYmmetric Rank-K update)

dominant part of Cholesky factorization

(solve A= L - LT for symmetric positive definite matrix A)

Symmetric Block Cyclic Distribution

7/21

Symmetric multiplication is SYRK: C += A - AT

v 2R

PR s M 2D Block Cyclic 2 x 4, P = 8 nodes

I E p]:@

Beaumont et. al Symmetric Block Cyclic Distribution 7/21

Symmetric multiplication is SYRK: C += A - AT

2D Block Cyclic 2 x 4, P = 8 nodes

dlssn
q

Beaumont et. al Symmetric Block Cyclic Distribution 7/21

Symmetric multiplication is SYRK: C += A - AT

vl A]
— —F

M 2D Block Cyclic 2 x 4, P = 8 nodes

dlssn
q

Beaumont et. al Symmetric Block Cyclic Distribution 7/21

Symmetric multiplication is SYRK: C += A - AT

vl A]

PR s M 2D Block Cyclic 2 x 4, P = 8 nodes

dlssn
q

Beaumont et. al Symmetric Block Cyclic Distribution 7/21

Symmetric multiplication is SYRK: C += A - AT

v 2R

PR s M 2D Block Cyclic 2 x 4, P = 8 nodes

dlssn
q

Beaumont et. al Symmetric Block Cyclic Distribution 7/21

Symmetric multiplication is SYRK: C += A - AT

Communication volume
Each tile of A is used by p+ g — 1 nodes: V = MN(p + q — 2)

Beaumont et. al Symmetric Block Cyclic Distribution 7/21

Symmetric multiplication is SYRK: C += A - AT

Communication volume
Each tile of A is used by p+ g — 1 nodes: V = MN(p + q — 2)
M?2N M M?

= ,and since S = — now: |p =
2MNVP 2P 2P g

Arithmetic Intensity: p =

SIS

Beaumont et. al Symmetric Block Cyclic Distribution 7/21

Symmetric multiplication is SYRK: C += A - AT

Communication volume

Each tile of A is used by p+ g — 1 nodes: V = MN(p + q — 2)
LRy M and since S i no

= , i = — now: |p =

2MNVP 2P 2P g

Upper bound (tight): v25 [SPAA'2022]

Arithmetic Intensity: p =

SIS

Beaumont et. al Symmetric Block Cyclic Distribution 7/21

SBC: Symmetric Block Cyclic — basic version

Goal: same nodes on rows and columns

Beaumont et. al Symmetric Block Cyclic Distribution 8/21

SBC: Symmetric Block Cyclic — basic version

Goal: same nodes on rows and columns

Symmetric Block Cyclic P =8
’[P = é & r=v2P

Beaumont et. al Symmetric Block Cyclic Distribution 8/21

SBC: Symmetric Block Cyclic — basic version

Goal: same nodes on rows and columns

Symmetric Block Cyclic P =8

Beaumont et. al Symmetric Block Cyclic Distribution 8/21

SBC: Symmetric Block Cyclic — basic version

Goal: same nodes on rows and columns

Symmetric Block Cyclic P =8

r[EE Pzé < r:\/ﬁ
6[8]

r

Beaumont et. al Symmetric Block Cyclic Distribution 8/21

SBC: Symmetric Block Cyclic — basic version

Goal: same nodes on rows and columns

Symmetric Block Cyclic P =8

[4]
r[EE Pzé = r:\/ﬁ
[4]5]6]8]

r

Beaumont et. al Symmetric Block Cyclic Distribution 8/21

SBC: Symmetric Block Cyclic — basic version

Goal: same nodes on rows and columns

Symmetric Block Cyclic P =8

[4]
r[EE Pzé = r:\/ﬁ
[4]5]6]8]

r

Beaumont et. al Symmetric Block Cyclic Distribution 8/21

SBC: Symmetric Block Cyclic — basic version

Goal: same nodes on rows and columns

Symmetric Block Cyclic P =8

1]
r[BB P=2 & r=1V2P
[[516]8]

¢ r >

Communication volume
One tile of A is needed by r nodes: V = MN(r — 1)

M?N M
Arithmetic intensity: p = = =|Vs
MN(r—1) 2P

Beaumont et. al Symmetric Block Cyclic Distribution 8/21

SBC: Extended version

Limitations of basic version

m not valid for odd values of r;

m only a small subset of nodes on the diagonal of A.

Beaumont et. al Symmetric Block Cyclic Distribution 9/21

SBC: Extended version

Limitations of basic version

m not valid for odd values of r;

m only a small subset of nodes on the diagonal of A.

Alternative way of allocating diagonal tiles of the SBC pattern

m Keep the set of @ nodes, reuse them on the diagonal

m Create several patterns, alternate between them on matrix A.

4
3
6
4 6 10
3 10

Generic pattern

Beaumont et. al Symmetric Block Cyclic Distribution 9/21

SBC: Extended version

Limitations of basic version

m not valid for odd values of r;

m only a small subset of nodes on the diagonal of A.

Alternative way of allocating diagonal tiles of the SBC pattern

m Keep the set of @ nodes, reuse them on the diagonal

m Create several patterns, alternate between them on matrix A.

8 10

Generic pattern Pattern 1

Beaumont et. al Symmetric Block Cyclic Distribution 9/21

SBC: Extended version

Limitations of basic version

m not valid for odd values of r;

m only a small subset of nodes on the diagonal of A.

Alternative way of allocating diagonal tiles of the SBC pattern

m Keep the set of @ nodes, reuse them on the diagonal

m Create several patterns, alternate between them on matrix A.

8 10

Generic pattern Pattern 1

Beaumont et. al Symmetric Block Cyclic Distribution 9/21

SBC: Extended version

Limitations of basic version

m not valid for odd values of r;

m only a small subset of nodes on the diagonal of A.

Alternative way of allocating diagonal tiles of the SBC pattern

m Keep the set of @ nodes, reuse them on the diagonal

m Create several patterns, alternate between them on matrix A.

8 10

Generic pattern Pattern 1

Beaumont et. al Symmetric Block Cyclic Distribution 9/21

SBC: Extended version

Limitations of basic version

m not valid for odd values of r;

m only a small subset of nodes on the diagonal of A.

Alternative way of allocating diagonal tiles of the SBC pattern

m Keep the set of @ nodes, reuse them on the diagonal

m Create several patterns, alternate between them on matrix A.

8 10

Generic pattern Pattern 1 Pattern 2

Beaumont et. al Symmetric Block Cyclic Distribution 9/21

SBC: Extended version

Limitations of basic version

m not valid for odd values of r;

m only a small subset of nodes on the diagonal of A.

Alternative way of allocating diagonal tiles of the SBC pattern

m Keep the set of @ nodes, reuse them on the diagonal

m Create several patterns, alternate between them on matrix A.

8 10

Generic pattern Pattern 1 Pattern 2

Beaumont et. al Symmetric Block Cyclic Distribution 9/21

SBC: Extended version

Limitations of basic version

m not valid for odd values of r;

m only a small subset of nodes on the diagonal of A.

Alternative way of allocating diagonal tiles of the SBC pattern

m Keep the set of @ nodes, reuse them on the diagonal

m Create several patterns, alternate between them on matrix A.

4
. 1
6 m Create 5= patterns for odd r
: g o T 10 m Create r — 1 patterns for even r
Generic pattern Pattern 1 Pattern 2

Beaumont et. al Symmetric Block Cyclic Distribution 9/21

Table of Contents

© Cholesky factorization

Beaumont et. al Symmetric Block Cyclic Distribution

Task-based Cholesky — solve A = L - LT for SPD matrix A

fori=1...N—1do

A+ (A;)
forj=i+1...N—1do

AJ",' «— TRSM(Aj’,', A,‘J)
fork=i4+1...N—1do

Ak,k < SYRK(Ak,k, Ak’;)

forj=k+1...N—1do

Aj,k «— GEMM(Aj’k, AJ",', Ak’,')

Right-looking Cholesky is mainly iterated SYRK
m One iteration: factorize panel, update trailing matrix (SYRK)

m Typical MPI-based implementations synchronize between iterations

Beaumont et. al Symmetric Block Cyclic Distribution 11/21

Task-based Cholesky — solve A = L - LT for SPD matrix A

fori=1...N—1do

A+ (A;)
forj=i+1...N—1do

AJ",' «— TRSM(Aj’,', A,‘J)
fork=i4+1...N—1do

Ak,k < SYRK(Ak,k, Ak’;)

forj=k+1...N—1do

Aj,k «— GEMM(Aj’k, AJ",', Ak’,')

Right-looking Cholesky is mainly iterated SYRK

m One iteration: factorize panel, update trailing matrix (SYRK)

m Typical MPI-based implementations synchronize between iterations

Beaumont et. al Symmetric Block Cyclic Distribution 11/21

Task-based Cholesky — solve A = L - LT for SPD matrix A

ey

Ay
Ry
Ay

fori=1...N—1do

A+ (A;)
forj=i+1...N—-1do

AJ",' «— TRSM(Aj’,', A,'7,')
fork=i4+1...N—1do

Ak,k < SYRK(Ak,k, Ak’;)

forj=k+1...N—1do

Aj,k «— GEMM(Aj’k, AJ",', Ak’,')

Right-looking Cholesky is mainly iterated SYRK
m One iteration: factorize panel, update trailing matrix (SYRK)

m Typical MPI-based implementations synchronize between iterations

Beaumont et. al Symmetric Block Cyclic Distribution 11/21

Task-based Cholesky — solve A = L - LT for SPD matrix A

ey

Ay
Ry
Ay

fori=1...N—1do

A+ (A;)
forj=i+1...N—1do

AJ",' «— TRSM(Aj’,', A,‘J)
fork=i4+1...N—1do

Ak,k < SYRK(Ak,k, Ak’;)

forj=k+1...N—1do

Aj,k «— GEMM(Aj’k, AJ",', Ak’,')

Right-looking Cholesky is mainly iterated SYRK

m One iteration: factorize panel, update trailing matrix (SYRK)

m Typical MPI-based implementations synchronize between iterations

Beaumont et. al Symmetric Block Cyclic Distribution 11/21

Task-based Cholesky — solve A = L - LT for SPD matrix A

fori=1...N—1do

A+ (A;)
forj=i+1...N—1do

AJ",' «— TRSM(Aj’,', A,‘J)
fork=i4+1...N—1do

Ak,k < SYRK(Ak,k, Ak’;)

forj=k+1...N—1do

Aj,k «— GEMM(Aj’k, AJ",', Ak’,')

Right-looking Cholesky is mainly iterated SYRK
m One iteration: factorize panel, update trailing matrix (SYRK)

m Typical MPI-based implementations synchronize between iterations

Beaumont et. al Symmetric Block Cyclic Distribution 11/21

Task-based Cholesky — solve A = L - LT for SPD matrix A

fori=1...N—1do

A+ (A;)
forj=i+1...N—1do

AJ",' «— TRSM(Aj’,', A,‘J)
fork=i4+1...N—1do

Ak,k < SYRK(Ak,k, Ak’;)

forj=k+1...N—1do

Aj,k «— GEMM(Aj’k, AJ",', Ak’,')

Right-looking Cholesky is mainly iterated SYRK
m One iteration: factorize panel, update trailing matrix (SYRK)

m Typical MPI-based implementations synchronize between iterations

Beaumont et. al Symmetric Block Cyclic Distribution 11/21

Task-based Cholesky — solve A = L - LT for SPD matrix A

fori=1...N—1do

A+ (A;)
forj=i+1...N—-1do

AJ",' «— TRSM(Aj’,', A,'7,')
fork=i4+1...N—1do

Ak,k < SYRK(Ak,k, Ak’;)

forj=k+1...N—1do

Aj,k «— GEMM(Aj’k, AJ",', Ak’,')

Right-looking Cholesky is mainly iterated SYRK
m One iteration: factorize panel, update trailing matrix (SYRK)
m Typical MPl-based implementations synchronize between iterations

Beaumont et. al Symmetric Block Cyclic Distribution 11/21

Task-based Cholesky — solve A = L - LT for SPD matrix A

fori=1...N—1do

A+ (A;)
forj=i+1...N—1do

AJ",' «— TRSM(Aj’,', A,‘J)
fork=i4+1...N—1do

Ak,k < SYRK(Ak,k, Ak’;)

forj=k+1...N—1do

Aj,k «— GEMM(Aj’k, AJ",', Ak’,')

Right-looking Cholesky is mainly iterated SYRK

m One iteration: factorize panel, update trailing matrix (SYRK)

m Typical MPI-based implementations synchronize between iterations

Beaumont et. al Symmetric Block Cyclic Distribution 11/21

Task-based Cholesky — solve A = L - LT for SPD matrix A

[]

Right-looking Cholesky is mainly iterated SYRK
m One iteration: factorize panel, update trailing matrix (SYRK)

m Typical MPl-based implementations synchronize between iterations

Beaumont et. al Symmetric Block Cyclic Distribution 11/21

Task-based Cholesky — solve A = L - LT for SPD matrix A

[

Right-looking Cholesky is mainly iterated SYRK
m One iteration: factorize panel, update trailing matrix (SYRK)

m Typical MPI-based implementations synchronize between iterations

Beaumont et. al Symmetric Block Cyclic Distribution 11/21

Task-based Cholesky — solve A = L - LT for SPD matrix A

&

Right-looking Cholesky is mainly iterated SYRK

m One iteration: factorize panel, update trailing matrix (SYRK)

m Typical MPI-based implementations synchronize between iterations

Beaumont et. al Symmetric Block Cyclic Distribution 11/21

Task-based Cholesky — solve A = L - LT for SPD matrix A

WL

Right-looking Cholesky is mainly iterated SYRK
m One iteration: factorize panel, update trailing matrix (SYRK)

m Typical MPI-based implementations synchronize between iterations

Beaumont et. al Symmetric Block Cyclic Distribution 11/21

Task-based Cholesky — solve A = L - LT for SPD matrix A

=

Right-looking Cholesky is mainly iterated SYRK
m One iteration: factorize panel, update trailing matrix (SYRK)

m Typical MPI-based implementations synchronize between iterations
m Task-based allows for large lookahead and thus more parallelism

m Automatic handling of communications: easy to change the data allocation

Beaumont et. al Symmetric Block Cyclic Distribution 11/21

Experimental results

Experimental setting

m bora nodes of PlaFRIM, Bordeaux:

® 42 nodes, Intel Xeon Skylake Gold 6240, 36 cores per node
® 100Gb/s OmniPath network

m chameleon library, based on starpu runtime

m Intel MKL 2020, Open MPI version 4.0.3

m One starpu process per node, each task executed on one core

= One core reserved for handling MPI comms, one for task submission & scheduling
m tile size b =500

Beaumont et. al Symmetric Block Cyclic Distribution 12/21

Experimental results: Cholesky factorization on P ~ 28 nodes

CHAMELEON+STARPU on bora cluster (36 cores per node: 1008 cores)

1500
Theoretical peaks
(34 and 36 cores)
1000
Mapping
v DBC
E — (P=28, pxq=7x4)
2 2DBC
5 —— (P=30, pxq=6x5)
T
g SBC
— (P=28,r=8)
500
0
0e+00 1e405 26405 30405

Matrix size

Beaumont et. al Symmetric Block Cyclic Distribution 13 /21

Table of Contents

@ 2.5D Cholesky implementation

Beaumont et. al Symmetric Block Cyclic Distribution 14 /21

2.5D Cholesky implementation

Main ideas

m Replicate the matrix on c slices of nodes

m Perform iteration k on slice k mod c: updates of a tile accumulate on ¢ nodes
m Reduce operation at the end to merge all updates

m Task-based implentation: high lookahead avoids idle time

Beaumont et. al Symmetric Block Cyclic Distribution 15/21

2.5D Cholesky implementation

Main ideas

m Replicate the matrix on c slices of nodes

m Perform iteration k on slice k mod c: updates of a tile accumulate on ¢ nodes
m Reduce operation at the end to merge all updates

m Task-based implentation: high lookahead avoids idle time

Beaumont et. al Symmetric Block Cyclic Distribution 15/21

2.5D Cholesky implementation

Main ideas

m Replicate the matrix on c slices of nodes

m Perform iteration k on slice k mod c: updates of a tile accumulate on ¢ nodes
m Reduce operation at the end to merge all updates

m Task-based implentation: high lookahead avoids idle time

Beaumont et. al Symmetric Block Cyclic Distribution 15/21

2.5D Cholesky: communication volume

m Can be used with any 2D distribution, reproduced on c slices. % nodes per slice
m Communication volume:

* 2DBC: M2(2\/E +c—1) SBC: M(,/2 1)

With limited memory S

m Use as many slices as possible: ¢ =

M

L 1 M3 3 o : M3
m Communication volume: | V = - — [+ o(M?) [Kwasniewki et al, SC'21]: |V ~ 1. —

2VS

With large memory

m Select the value of ¢ to minimize the communication volume

= For SBC, we obtain ¢ ~ ¢/P/2 and r = 2¢, so that | V ~ 3{/1/2- SV/P

m With 2DBC, c ~ VP and |V ~ 3 - SVP: factor /2 ~ 1.26 on comms and memory

Beaumont et. al Symmetric Block Cyclic Distribution 16 /21

2.5D version: experimental results (¢ = 3

1500
Theoretical peaks
(34 and 36 cores)
1000
o
3
3
2
2
s
5
r
o]
500
0
0e+00 16405 20405 3e+05

Matrix size

Beaumont et. al Symmetric Block Cyclic Distribution

Mapping

-

-.-

o

2DBC

(P=28, pxq=7x4)
DBC

(P=30, pxq=6x5)
DBC

(P=32, pxq=8x4)

SBC

(P=28, 1=8)

2DBC 2.5D
(P=30, pxq=5x2, c=3)

SBC 2.5D
(P=30, 1=5, c=3)

Library

.
A

Chameleon-StarPU
CONfCHOX

17 /21

Table of Contents

© Conclusions

Beaumont et. al Symmetric Block Cyclic Distribution 18 /21

Conclusions

Contributions
m New Symmetric Block Cyclic distribution, adapted for SYRK & Cholesky

Lowers communication volume by a factor of /2

Task-based 2.5D implementation of Cholesky factorization

Significantly improved performance and scalability

Can be applied to many other symmetric computations

Open questions
m SBC: each node appears twice. Would higher counts improve the performance further?

m Efficiency of 2.5D for Matrix Multiplication:

® |n Cholesky, some reductions start very early = overlap with computations
® For GEMM/SYRK, same amount of work on all tiles: how to organize the reductions?

Beaumont et. al Symmetric Block Cyclic Distribution 19/21

Ongoing work: recent results (under evaluation)

Optimal TBC distribution
m Based on the TBS sequential algorithm from [SPAA'2022] el
m Used in the context of the SYMM operation

m Also improves the performance of Cholesky

Beaumont et. al Symmetric Block Cyclic Distribution 20/21

Ongoing work: recent results (under evaluation)

Optimal TBC distribution
m Based on the TBS sequential algorithm from [SPAA'2022]
m Used in the context of the SYMM operation

m Also improves the performance of Cholesky e :

Beaumont et. al Symmetric Block Cyclic Distribution 20/21

Ongoing work: recent results (under evaluation)

Optimal TBC distribution

m Based on the TBS sequential algorithm from [SPAA'2022]
m Used in the context of the SYMM operation

m Also improves the performance of Cholesky

e s 2005

Nl Distributions for any value of P

m 2DBC and SBC only efficient for specific values of P

n
8

Pattern cost

m Proposed Generalized 2DBC for non-symmetric case

m Proposed greedy GCR&M for symmetric case

.
5

0 50 150 200

100
Number of nodes

Pattern = 2DBC - G-2DBC + GCRM 4 SBC
Beaumont et. al

Symmetric Block Cyclic Distribution 20/21

Thank you

Questions?

Elq_}" " (8]

o ...J-l

https://solverstack.gitlabpages.inria.fr/chameleon/

https://solverstack.gitlabpages.inria.fr/chameleon/

	Introduction
	Symmetric Distribution
	Cholesky factorization
	2.5D Cholesky implementation
	Conclusions

