Software Defined Exchange (SDX) Multi-Services for Petascale Science

Joe Mambretti, Jim Chen, Fei Yeh,
International Center for Advanced Internet Research - Northwestern University
j-mambretti, jim-chen, fyeh@northwestern.edu

Abstract

With multiple national and international partners, iCAIR is designing, developing, implementing, and operating an international Software Defined Exchange (SDX) at the StarLight International/National Communications Exchange Facility, which integrates multiple services designed for large scale global data intensive science. The StarLight SDX is based on a flexible, scalable, programmable platform. This SDX, which is managed by a multi-organizational consortium, has been proven able to integrate many different multi-domain services and to insure services isolation. Services include those based on 100 Gbps Data Transfer Nodes (DTNs) for Wide Area Networks (WANs), including trans-oceanic WANs. Currently, a key focus is scaling to 400 Gbps WAN and LAN E2E technologies that provide high performance transport services for petascale science, controlled using Software Defined Networking (SDN) techniques. SDN enabled DTN services are being designed specifically to optimize capabilities for supporting large scale, high capacity, high performance, reliable, high quality, sustained individual data streams for science research.

Goals

1 As a part of an initiative funded by the National Science Foundation’s (NSF) International Research Network Connections (IRNC) program, iCAIR is designing, creating and implementing as a prototype, and experimenting with an international Software Defined Exchange (SDX) at the StarLight International/National Communications Exchange Facility (StarLight), which provides WAN services that enable Software Defined Networking (SDN) techniques to support data intensive science.

2 This SDX has been optimized for supporting services for high capacity individual data streams for science research over many thousands of miles supported by multi-domain networks.

3 The integration of these services with DTN based services using SDN has also been designed to ensure high performance for those streams and to support highly reliable services for long duration data flows.

4 End-To-End (E2E) high performance, reliable data transfer for large scale individual data streams has been a major challenge for science community for many years.

5 Resolving this issue requires addressing and optimizing multiple components in an E2E path, processing pipelines, high performance protocols, kernel tuning, OS bypass, path architecture, buffers, memory used for transport, and many other individual components.

6 iCAIR has developed and is experimenting with a prototype model for an integrated SDN/SDX/DTN design, which will be showcased with multiple enhancements at SC23.

7 Enhancements include additional capabilities for slicing resources across the exchange to segment different science communities while using a common infrastructure.

8 This initiative is also developing capabilities for interoperability among other RNC SDXs.

Resources

Required resources from SCinet are use of some portion of 1.2 Tbps path SCinet has been asked to provision from the StarLight facility in Chicago to the StarLight booth on the SC23 showfloor and from StarLight to the JBDT Facility in McLean Virginia.

Involved Parties

- Joe Mambretti, iCAIR, j-mambretti@northwestern.edu
- Jim Chen, iCAIR, jim-chen@northwestern.edu
- Fei Yeh, iCAIR, fyeh@northwestern.edu
- Tom DeFanti, UCSD, tdefanti@ucsd.edu
- John Graham, UCSD, jjgraham@ucsd.edu
- Linda Winkler, ANL, lwinkler@anl.gov
- Metropolitan Research and Education Network
- StarLight International/National Communication Exchange Facility and Consortium
- SC23 SCinet